
Variables, Values and Types

Session 2

Overview

◦ Variables

◦ Declarations

◦ Identifiers and Reserved Words

◦ Types

◦ Expressions

◦ Assignment statement

◦ Variable initialization

Review: Computer Organization

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk

Keyboard
mouse

Review: Memory
Memory is a collection of locations called variables

In a programming language, we get at the location by using
a variable

Each variable has
A name (an identifier)

A type (the kind of information it can contain)

Variables
Refer to memory location where a particular value is stored

Type of data decides the amount of memory allocated to
variables

Names assigned to variables to store a particular data, help
us in retrieving the data as and when required

Memory and Variables

Memory is a collection of locations called variables

In a programming language, we get at the location by using
a variable

Each variable has
A name (an identifier)

A type (the kind of information it can contain)

Basic types include
int (integers – whole numbers: 17, -42)

double (floating-point numbers with optional fraction and/or
exponent: 3.14159, 6.02e23)

char (character data: ‘a’, ‘?’, ‘N’, ‘ ’, ‘9’)
Note: ‘9’ is a character; 9 is an integer – they are different and have
different types

Memory example

Variable declarations in C#
int i = 12;

double gasPrice = 1.799;

char bang = ‘!’;

Picture:

i

gasPrice

bang

12

1.799

‘!’

(int)

(double)

(char)

Declaring Variables
int months;

Integer variables represent whole numbers:

1, 17, -32, 0 Not 1.5, 2.0, ‘A’

double pi;

Floating point variables represent real numbers:

3.14, -27.5, 6.02e23, 5.0 Not 3

char first_initial, middle_initial, marital_status;

Character variables represent individual keyboard

characters:

'a', 'b', 'M', '0' , '9' , '#' , ' ' Not "Bill"

Data Type
Decides the amount of memory to be allocated to a
variable to store a particular type of data

Declaring a variable
◦ Allocates memory

◦ Portion of memory is referred to by the variable name

General form of declaring a variable
◦ data type (variable name)

Common data types
◦ Numeric

◦ Alphanumeric

Data Types
Type int

◦ Stores numeric data

◦ Consists of a sequence of one or more digits

◦ Includes only whole numbers

Type char
◦ Stores a single character

◦ The single character is enclosed within two single quotation marks

◦ Digits can also be stored as characters but cannot be used for calculations

Data Types (Contd.)
Type float
◦ Stores values containing decimal places

◦ Stores either whole or fractional numbers

Type double
◦ Stores twice the number of digits than a float type

◦ Occupies double memory space than a float

Precise number of digits stored by float and double types
depends upon the particular computer system

Derived Data Types
Modifiers used to alter the meaning of the data type to fit
various situations more precisely

unsigned
◦ Specifies that a variable can take only positive values

◦ Used with the int and float data types by prefixing it with the word
unsigned

long and short
◦ Used when an integer of longer or shorter length than the usual

length is required

◦ A long integer is written as long int or just long

◦ A short integer is written as short int or short

Data Types (Contd.)

The various data types and their memory requirements

Variables (Examples)
The area of a rectangle is given by:

◦ Area = A = Length x Breadth = L x B

The simple interest is given by:
◦ Interest = I = Principal x Time x Rate / 100 = P x T x R / 100

Variables (Example)
The sum of the marks obtained by five students is calculated as follows:

◦ Sum = 24 + 56 + 72 + 36 + 82

To calculate the average of the marks, the variable sum can be used as
follows:

◦ Avg = Sum / 5

Guidelines for specifying Variable Names

Must begin with an alphabet

First character to be followed by a sequence of letters or digits
or special character ‘underscore’

Avoid using letter O in situations where it can be confused
with the number 0 and the lowercase letter l can be mistaken
with the number 1

Uppercase and lowercase letters are treated different

Name of the variable should be descriptive of the value it
holds

Reserved words

Certain identifiers have a "reserved" (permanent, special)
meaning in C#

• We’ve seen int already

• Will see a couple of dozen more eventually

These words always have that special meaning, and cannot be
used for other purposes.

• Cannot be used names of variables

• Must be spelled exactly right

• Sometimes also called “keywords”

Under the Hood

All information in the CPU or memory is actually a series of ‘bits’: 1’s and
0’s

Known as ‘binary’ data
Amazingly, all kinds of data can be represented in binary: numbers, letters, sounds,
pictures, etc.

The type of a variable specifies how the bits are interpreted

Normally we ignore the underlying bits and work with C# types

Binary C type (sample) value

01010001 int 161

char ‘A’

double 10.73

Assignment Statements

int area, length, width;
length = 16;
width = 32;
area = length * width;

An assignment statement stores a value into a variable.

The assignment may specify a simple value to be stored, or

an expression

Execution of an assignment statement is done in two distinct steps:
Evaluate the expression on the right hand side
Store the value of the expression into the variable named on
the left hand side

/* declaration of 3 variables */
/* "length gets 16" */
/* "width gets 32" */
/* "area gets length times width" */

my_age = my_age+1

This is a “statement”, not an equation. Is there a difference?
The same variable may appear on both sides of an assignment
statement

my_age = my_age + 1 ;
balance = balance + deposit ;

The old value of the variable is used to compute the value

of the expression, before the variable is changed.

You wouldn’t do this in math!

Program Execution

A memory location is reserved by declaring a C# variable

You should give the variable a name that helps someone else reading the
program understand what it is used for in that program

Once all variables have been assigned memory locations, program
execution begins

The CPU executes instructions one at a time, in order of their appearance
in the program

An Example

/* calculate and print area of 10x3 rectangle */

void Main(string [] args)

{

int rectangleLength;

int rectangleWidth;

int rectangleArea;

rectangleLength = 10;

rectangleWidth = 3;

rectangleArea = rectangleLength * rectangleWidth ;

Console.WriteLine(“with length {0} and width {1} the area of rectangle is {2}”,

rectangleLength, rectangleWidth ,rectangleArea);

}

Hand Simulation

A useful practice is to simulate by hand the operation of
the program, step by step.

This program has three variables, which we can depict by
drawing boxes or making a table

We mentally execute each of the instructions, in
sequence, and refer to the variables to determine the
effect of the instruction

Tracing the Program

rectangleLength rectangleWidth rectangleArea

after

declaration

? ? ?

after

statement 1

10 ? ?

after

statement 2

10 3 ?

after

statement 3

10 3 30

Initializing variables

Initialization means giving something a value for the first
time.

Anything which changes the value of a variable is a
potential way of initializing it.

For now, that means assignment statement

General rule: variables have to be initialized before their
value is used.

Failure to initialize is a common source of bugs.

Declaring vs Initializing

void Main(string [] args)

{
double income; /*declaration of income, not an

assignment or initialization */

income = 35500.00; /*assignment to income,

initialization of income,

not a declaration.*/

Console.WriteLine("Old income is {0}", income);

income = 39000.00; /*assignment to income, not a

declaration,or initialization */

Console.WriteLine("After raise: {0}", income);

}

Example Problem:
Fahrenheit to Celsius

Problem (specified):

Convert Fahrenheit temperature to Celsius

Example Problem:
Fahrenheit to Celsius

Problem (specified):

Convert Fahrenheit temperature to Celsius

Algorithm (result of analysis):

Celsius = 5/9 (Fahrenheit - 32)

What kind of data (result of analysis):

double fahrenheit, celsius;

Fahrenheit to Celsius (I)
An actual C# program

void Main(string [] args)
{

double fahrenheit, celsius;

celsius = (fahrenheit - 32.0) * 5.0 / 9.0;

}

Fahrenheit to Celsius (II)

void Main(string [] args)

{

double fahrenheit, celsius;

Console.WriteLine("Enter a Fahrenheit temperature: ");

fahrenheit=Convert.ToDouble(Console.ReadLine());

celsius = (fahrenheit - 32.0) * 5.0 / 9.0;

Console.WriteLine("That equals {0} degrees Celsius.",

celsius);

}

Running the Program

Enter a Fahrenheit temperature: 45.5
That equals 7.500000 degrees Celsius

Program trace
fahrenheit celsius

after declaration ? ?
after first WriteLine ? ?
after ReadLine 45.5 ?
after assignment 45.5 7.5
after second WriteLine 45.5 7.5

Assignment step-by-step
celsius = (fahrenheit-32.0) * 5.0 / 9.0 ;

1. Evaluate right-hand side

a. Find current value of fahrenheit 72.0

b. Subtract 32.0 40.0

b. Multiply by 5.0 200.0

c. Divide by 9.0 22.2

2. Assign 22.2 to be the new value of celsius

(the old value of celsius is lost.)

Fahrenheit to Celsius (III)

void Main(string [] args)

{

double fahrenheit, celsius;

Console.WriteLine("Enter a Fahrenheit temperature: ");

Fahrenheit = Convert.ToDouble(Console.ReadLine());

celsius = fahrenheit - 32.0 ;

celsius = celsius * 5.0 / 9.0 ;

Console.WriteLine("That equals {0} degrees Celsius.",

celsius);

}

Does Terminology Matter?
Lots of new terminology today!

"variable", "reserved word", "initialization", "declaration", “statement”,
"assignment", etc., etc.

You can write a complicated program without using these
words

But you can't talk about your programs without them!

Convert class in C#
Converts a base data type to another base data type.

Common methods
◦ Convert.ToInt16

◦ Convert.ToInt32

◦ Convert.ToDouble

◦ Convert.ToBoolean

◦ Convert.ToChar

◦ Convert.ToDateTime

	Variables, Values and Types
	Overview
	Slide 3
	Review: Memory
	Variables
	Memory and Variables
	Memory example
	Declaring Variables
	Data Type
	Data Types
	Data Types (Contd.)
	Derived Data Types
	Data Types (Contd.)
	Variables (Examples)
	Variables (Example)
	Guidelines for specifying Variable Names
	Reserved words
	Under the Hood
	Assignment Statements
	my_age = my_age+1
	Program Execution
	An Example
	Hand Simulation
	Tracing the Program
	Initializing variables
	Slide 26
	Example Problem: Fahrenheit to Celsius
	Example Problem: Fahrenheit to Celsius
	Fahrenheit to Celsius (I) An actual C# program
	Fahrenheit to Celsius (II)
	Running the Program
	Assignment step-by-step
	Fahrenheit to Celsius (III)
	Does Terminology Matter?
	Convert class in C#

