
Pointers & Structures
SESSION 9

Pointers
A special variable that contains the “address” of the memory location
of another variable

Declaring a pointer variable in C

int *p

Introduction to Pointers
When we declare a variable some memory is allocated for it. The memory
location can be referenced through the identifier “i”. Thus, we have two
properties for any variable : its address and its data value. The address of the
variable can be accessed through the referencing operator “&”. “&i” gives the
memory location where the data value for “i” is stored.

A pointer variable is one that stores an address. We can declare pointers as
follows int* p; .This means that p stores the address of a variable of type int.

Introduction to Pointers
Q: Why is it important to declare the type of the variable that a pointer points
to? Aren’t all addresses of the same length?

A: It’s true that all addresses are of the same length, however when we perform
an operation of the type “p++” where “p” is a pointer variable, for this
operation to make sense the compiler needs to know the data type of the
variable “p” points to. If “p” is a character pointer then “p++” will increment “p”
by one byte (typically), if “p” were an integer pointer its value on “p++” would
be incremented by 2 bytes (typically).

Introduction to Pointers
Summary of what was learnt so far:

◦ Pointer is a data type that stores addresses, it is declared as follows:

int* a;

char* p; etc.

◦ The value stored in a pointer p can be accessed through the dereferencing operator
“*”.

◦ The address of a memory location of a variable can be accessed through the reference
operator “&”.

◦ Pointer arithmetic: only addition and subtraction are allowed.

Pointers and Arrays
The concept of array is very similar to the concept of pointer. The identifier of
an array actually a pointer that holds the address of the first element of the
array.

Therefore if you have two declarations as follows:
◦ “int a[10];” “int* p;” then the assignment “p = a;” is perfectly valid

◦ Also “*(a+4)” and “a[4]” are equivalent as are “*(p+4)” and “p[4]” .

◦ The only difference between the two is that we can change the value of “p” to any
integer variable address whereas “a” will always point to the integer array of length 10
defined.

Character Pointers, Arrays and Strings
What is a String?

◦ A string is a character array that is ‘\0’ terminated.

◦ E.g. “Hello”

What is a Character array?
◦ It is an array of characters, not necessarily ‘\0’ terminated

◦ E.g. char test[4] = {‘a’, ‘b’, ‘c’, ‘d’}; <this char array is not zero terminated>

What is a character pointer?
◦ It is a pointer to the address of a character variable.

◦ E.g. char* a; <this pointer is not initialized>

Examples
char* a = “Hello”;

◦ a -> gives address of ‘H’

◦ *a -> gives ‘H’

◦ a[0] -> gives ‘H’

◦ a++ -> gives address of ‘e’

◦ *a++ -> gives ‘e’

◦ a = &b; where b is another char variable is perfectly LEGAL. However “char a[100];” “a
=&b;” where b is another char variable is ILLEGAL.

Assigning an Address to a pointer

int a = 10

int *p

p = &a

a p

10

10 100

int a=10, int *p

p=&a

Address

Address 100 104

100 104

Pointers (Contd.)

char c = ‘s’, *cp

cp = &c

c is a variable of type character

cp is a pointer that points to c

Retrieving Values from a Pointer

int num1=2,num2,*pnt

pnt=&num1

num2=*pnt

num1 pnt num2

2 int num1,num2,*pnt

Address 100 104 108

2 100 pnt=&num1

Address 100 104 108

2 2100 num2=*pnt

Address 100 104 108

Pointers in C#

POINTER
A pointer is a programming language object, whose value
refers to (or "points to") another value stored elsewhere
in the computer memory using its memory address.

A pointer is a variable whose value is the address of
another variable i.e., the direct address of the memory
location. similar to any variable or constant, you must
declare a pointer before you can use it to store any
variable address.

Pointer types are not tracked by the default garbage
collection mechanism.

Unsafe Codes
The C# statements can be executed either as in a safe or in an unsafe
context. The statements marked as unsafe by using the keyword unsafe
runs out side the control of Garbage Collector. Remember that in C# any
code involving pointers requires an unsafe context.

Remember to enable unsafe code in the Project Designer; choose
Project, Properties on the menu bar, and then select Allow unsafe code
in the Build tab.

Allow unsafe code

representation

The pointer indirection operator * can be used to access
the contents at the location pointed to by the pointer
variable.

ON RUNNING THE CODE
AGAIN

Structure

A data type that holds different types of data within a single group

struct Books {
public string title;
public string author;
public string subject;
public int book_id;

};

Defining a Structure
Start

Structure employee

{

char name[10]

char address[20]

float salary

}

End

Structure keyword declares a structure in algorithms

name, address and salary are the members of the structure

employee is the structure name

name[10] address[20] salary

char char float
0 1 2 … 9 10 0 1 2 … 19 20

Defining a Structure (Contd.)

 The members within the structure employee

can be visualized as:

Defining a Structure (Contd.)

Start

Structure employee

{

char name[10]

char address[20]

float salary

}

Structure employee e1

End

 Structure e1 of the type employee is created

Accessing the Members of a
Structure
Members of structure are accessed as:
Structure variable.Member variable

Example: To access members of structure e1
e1.name

e1.address

e1.salary

Structure variables can be assigned values
e1.name = “Jackson”

e1.address = “15/2, New York”

e1.salary = 500,000

Structures (Example)
To calculate the area of a rectangle:
Start

Structure rectangle

{

int length

int breadth

}

Structure rectangle rect

declare area as integer

rect.length = 10

rect.breadth = 2

area = rect.length * rect.breadth

End

Variant of a Structure

Start

Structure rectangle

{

int length

int breadth

}

Structure rectangle rect = {10,2}

End

Variable rect is defined and the values 10 and 2 is
assigned for its members

struct Books {

public string title;

public string author;

public string subject;

public int book_id;

};

public class testStructure {

public static void Main(string[] args) {

Books Book1;

Books Book2;

Book1.title = "C# Programming";

Book1.author = "Nuha Ali";

Book1.subject = "C# Programming Tutorial";

Book1.book_id = 6495407;

Book2.title = "Telecom Billing";

Book2.author = "Zara Ali";

Book2.subject = "Telecom Billing Tutorial";

Book2.book_id = 6495700;

Console.WriteLine("Book 1 title : {0}", Book1.title);

Console.WriteLine("Book 1 author : {0}", Book1.author);

Console.WriteLine("Book 1 subject : {0}", Book1.subject);

Console.WriteLine("Book 1 book_id :{0}", Book1.book_id);

Console.WriteLine("Book 2 title : {0}", Book2.title);

Console.WriteLine("Book 2 author : {0}", Book2.author);

Console.WriteLine("Book 2 subject : {0}", Book2.subject);

Console.WriteLine("Book 2 book_id : {0}",
Book2.book_id);

Console.ReadLine();

}

}

Structures

 Custom data Types

 Can have constructors

 Cannot implement
inheritance

 Can have methods

struct Books

{

public string title;

public string author;

public string subject;

public int book_id;

public Books(string t, string a, string s, int id)

{

title = t;

author = a;

subject = s;

book_id = id;

}

public void Display()

{

Console.WriteLine("Title : {0}", title);

Console.WriteLine("Author : {0}", author);

Console.WriteLine("Subject : {0}", subject);

Console.WriteLine("Book_Id :{0}\n",

book_id);

}

};

class Program

{

public static void Main(string[] args)

{

Books Book1 = new Books("C#

Programming", "Nuha Ali", "C# Programming

Tutorial", 6495407);

Books Book2 = new Books("Telecom Billing",

"Zara Ali", "Telecom Billing Tutorial", 6495700);

Book1.Display();

Book2.Display();

Console.ReadLine();

}

}

Enumerators (1)

 They are a set of named constants.

Enumerators (2)

 Enumerators in C# have numbers associated
with the values.

 By default, the first element of enum is assigned
a value of 0 and is incremented for each
subsequent enum element.

Enumerators (3)

 The default value can be overridden during
initialization.

	Pointers & Structures
	Pointers
	Introduction to Pointers
	Introduction to Pointers
	Introduction to Pointers
	Pointers and Arrays
	Character Pointers, Arrays and Strings
	Examples
	Assigning an Address to a pointer
	Pointers (Contd.)
	Retrieving Values from a Pointer
	Pointers in C#
	POINTER
	Unsafe Codes
	Allow unsafe code
	representation
	Slide 17
	Slide 18
	Slide 19
	Structure
	Defining a Structure
	Defining a Structure (Contd.)
	Defining a Structure (Contd.)
	Accessing the Members of a Structure
	Structures (Example)
	Variant of a Structure
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

