

Inheritance

 A child inherits characteristics of its

parents

 Besides inherited characteristics, a child

may have its own unique characteristics

Inheritance in Classes

 If a class B inherits from class A then it
contains all the characteristics
(information structure and behaviour) of
class A

 The parent class is called base class
and the child class is called derived
class

 Besides inherited characteristics,
derived class may have its own unique
characteristics

Example – Inheritance

Person

Teacher
DoctorStudent

Example – Inheritance

Shape

Circle
TriangleLine

Inheritance – “IS A” or

“IS A KIND OF” Relationship

 Each derived class is a special kind of

its base class

Example – “IS A” Relationship

Person
name

age

gender
eat
walk

Teacher
designation

salary

teach

takeExam

Student
program

studyYear

study

heldExam

Doctor
designation

salary

checkUp

prescribe

Example – “IS A” Relationship

Shape
color

coord

draw

rotate

setColor

Circle
radius

draw

computeArea

Line
length

draw

Triangle

angle

draw

computeArea

Inheritance – Advantages

 Reuse

 Less redundancy

 Increased maintainability

Reuse with Inheritance

 Main purpose of inheritance is reuse

 We can easily add new classes by

inheriting from existing classes

 Select an existing class closer to the desired

functionality

 Create a new class and inherit it from the

selected class

 Add to and/or modify the inherited

functionality

Example Reuse

Shape
color

coord

draw

rotate

setColor

Circle
radius

draw

computeArea

Line
length

draw

Triangle

angle

draw

computeArea

Example Reuse

Person
name

age

gender
eat
walk

Teacher
designation

salary

teach

takeExam

Student
program

studyYear

study

heldExam

Doctor
designation

salary

checkUp

prescribe

Example Reuse

Person
name

age

gender
eat
walk

Teacher
designation

salary

teach

takeExam

Student
program

studyYear

study

heldExam

Doctor
designation

salary

checkUp

prescribe

Recap-Inheritance

 Derived class inherits all the

characteristics of the base class

 Besides inherited characteristics,

derived class may have its own unique

characteristics

 Major benefit of inheritance is reuse

Concepts Related with

Inheritance

 Generalization

 Subtyping (extension)

 Specialization (restriction)

Generalization

 In OO models, some classes may have

common characteristics

 We extract these features into a new

class and inherit original classes from

this new class

 This concept is known as Generalization

Example – Generalization

Circle
color

vertices

radius

move

setColor

computeArea

Line
color

vertices

length

move

setColor

getLength

Triangle

color

vertices

angle

move

setColor

computeArea

Example – Generalization

Shape
color

vertices

move

setColor

Circle
radius

computeArea

Line
length

getLength

Triangle

angle

computeArea

Example – Generalization

Teacher
name

age

gender

designation

salary

teach

takeExam

eat
walk

Student
name

age

gender

program

studyYear

study

heldExam

eat

walk

Doctor
name

age

gender

designation

salary

checkUp

prescribe

eat

walk

Example – Generalization

Person
name

age

gender
eat
walk

Teacher
designation

salary

teach

takeExam

Student
program

studyYear

study

heldExam

Doctor
designation

salary

checkUp

prescribe

Sub-typing & Specialization

 We want to add a new class to an
existing model

 Find an existing class that already
implements some of the desired state
and behaviour

 Inherit the new class from this class and
add unique behaviour to the new class

Sub-typing (Extension)

 Sub-typing means that derived class is

behaviourally compatible with the base

class

 Behaviourally compatible means that

base class can be replaced by the

derived class

Example –

Sub-typing

(Extension)

Person
name

age

gender

eats

walks

Student
program

studyYear

study

takeExam

Example –

Sub-typing

(Extension)

Shape
color

vertices

setColor

move

Circle
radius

computeCF

computeArea

Specialization (Restriction)

 Specialization means that derived class

is behaviourally incompatible with the

base class

 Behaviourally incompatible means that

base class can’t always be replaced by

the derived class

Example – Specialization (Restriction)

Person

age : [0..100]

…

Adult
age : [18..100]

…

setAge(a)

…

setAge(a)

…

age = a

If age < 18 then

error

else

age = a

Example – Specialization (Restriction)

IntegerSet
…

NaturalSet
…

add(elem)

…

add(elem)

…

add element

to the set

If elem < 1 then

error

else

add element

to the set

Overriding

 A class may need to override the default
behavior provided by its base class

 Reasons for overriding
 Provide behavior specific to a derived class

 Extend the default behavior

 Restrict the default behavior

 Improve performance

Example – Specific Behaviour
Shape

color

vertices

draw

move

setColor

Circle
radius

draw

computeArea

Line
length

draw

Triangle

angle

draw

computeArea

Example – Extension

Window
width

height

open

close

draw

DialogBox
controls

enable

draw

1Invoke Window’s

draw

2draw the dialog

box

Example – Restriction

IntegerSet
…

NaturalSet
…

add(elem)

…

add(elem)

…

Add element

to the set

If elem < 1 then

give error

else

Add element

to the set

Example – Improve Performance

 Class Circle

overrides rotate

operation of class

Shape with a Null

operation.

Shape
color

coord

draw

rotate

setColor

Circle
radius

draw

rotate

Abstract Classes

 An abstract class implements an

abstract concept

 Main purpose is to be inherited by other

classes

 Can’t be instantiated

 Promotes reuse

Example – Abstract Classes

 Here, Person is an abstract class

Teacher
DoctorStudent

Person
name

age

gender
eat

walk

Example – Abstract Classes

 Here, Vehicle is an abstract class

Bus
TruckCar

Vehicle
color

model

accelerate

applyBrakes

Concrete Classes

 A concrete class implements a concrete

concept

 Main purpose is to be instantiated

 Provides implementation details specific

to the domain context

Example – Concrete Classes

 Here, Student, Teacher and Doctor are
concrete classes

Teacher
DoctorStudent

program

studyYear

study

heldExam

Person

Example – Concrete Classes

• Here, Car, Bus and Truck are concrete
classes

Bus
Car

Vehicle

Truck

capacity

load

unload

Multiple Inheritance
[Not Supported by Java or C#]

 We may want to reuse characteristics of

more than one parent class

Example – Multiple Inheritance

Mermaid

Example – Multiple Inheritance

Mermaid

Woman Fish

Example – Multiple Inheritance

Amphibious Vehicle

Example – Multiple Inheritance

Amphibious Vehicle

Land Vehicle Water Vehicle

Vehicle

Car Boat

Problems with Multiple

Inheritance

 Increased complexity

 Reduced understanding

 Duplicate features

Problem – Duplicate Features

 Which eat operation Mermaid inherits?

Mermaid

Woman Fish
eat

…

eat

…

Solution – Override the Common

Feature

Mermaid

Woman Fish
eat

…

eat

…

eat

…

Invoke eat

operation of

desired class

Problem – Duplicate Features (Diamond

Problem)

 Which changeGear operation Amphibious
Vehicle inherits?

Amphibious Vehicle

Land Vehicle Water Vehicle

Vehicle

Car Boat

changeGear

Solution to Diamond Problem

 Some languages disallow diamond hierarchy

 Others provide mechanism to ignore

characteristics from one side

Association

 Objects in an object model interact with

each other

 Usually an object provides services to

several other objects

 An object keeps associations with other

objects to delegate tasks

Kinds of Association

 Class Association

 Inheritance

 ObjectAssociation

 Simple Association

 Composition

 Aggregation

Simple Association

 Is the weakest link between objects

 Is a reference by which one object can

interact with some other object

 Is simply called as “association”

Kinds of Simple Association

 w.r.t navigation

 One-wayAssociation

 Two-wayAssociation

 w.r.t number of objects

 Binary Association

 TernaryAssociation

 N-ary Association

One-way Association

 We can navigate along a single direction

only

 Denoted by an arrow towards the server

object

Example – Association

 Ali lives in a House

Ali House
lives-in

11

Example – Association

 Ali drives his Car

Ali Car
drives

*1

Two-way Association

 We can navigate in both directions

 Denoted by a line between the

associated objects

Example – Two-way Association

 Employee works for company

 Company employs employees

Employee
works-for

Company
* 1

Example – Two-way Association

 Yasir is a friend of Ali

 Ali is a friend of Yasir

Yasir
friend

Ali
1 1

Binary Association

 Associates objects of exactly two

classes

 Denoted by a line, or an arrow between

the associated objects

Example – Binary Association

 Association “works-for” associates objects of
exactly two classes

Employee
works-for

Company
* 1

Example – Binary Association

 Association “drives” associates objects of
exactly two classes

Ali Car
drives

*1

Ternary Association

 Associates objects of exactly three

classes

 Denoted by a diamond with lines

connected to associated objects

Example – Ternary Association

 Objects of exactly three classes are
associated

Student Teacher

*

Course

1*

Example – Ternary Association

 Objects of exactly three classes are
associated

Project Language

1

Person

**

N-ary Association

 An association between 3 or more

classes

 Practical examples are very rare

Composition

 An object may be composed of other

smaller objects

 The relationship between the “part”

objects and the “whole” object is known

as Composition

 Composition is represented by a line

with a filled-diamond head towards the

composer object

Example – Composition of Ali

AliArm Leg

Head

1

1

Body

2 2

Example – Composition of Chair

Chair

SeatArm Leg

Back

1

12 4

Composition is Stronger

 Composition is a stronger relationship,

because

 Composed object becomes a part of the

composer

 Composed object can’t exist independently

Example – Composition is

Stronger

 Ali is made up of different body parts

 They can’t exist independent of Ali

Example – Composition is

Stronger

 Chair’s body is made up of different

parts

 They can’t exist independently

Aggregation

 An object may contain a collection

(aggregate) of other objects

 The relationship between the container

and the contained object is called

aggregation

 Aggregation is represented by a line

with unfilled-diamond head towards the

container

Example – Aggregation

RoomChair Table

Bed

1

* 1

1

Cupboard

Example – Aggregation

Garden Plant*

Aggregation is Weaker

 Aggregation is weaker relationship,

because

 Aggregate object is not a part of the

container

 Aggregate object can exist independently

Example – Aggregation is Weaker

 Furniture is not an intrinsic part of room

 Furniture can be shifted to another

room, and so can exist independent of a

particular room

Example – Aggregation is Weaker

 A plant is not an intrinsic part of a

garden

 It can be planted in some other garden,

and so can exist independent of a

particular garden

