
Session 4

Objectives

 Implement Constructors

 Implement Destructors in

 Explain the working of Garbage Collector

Object Orientation

Method Overloading

Access Modifiers

Encapsulation

Static Members

This pointer

Object-orientation

 Method of designing and implementing software

systems

 A technique for system modeling

 OO model consists of several interacting objects

What is a Model?

A model is an abstraction of something

 Purpose is to understand the product before

developing it

Examples

• Highway maps

• Architectural models

• Mechanical models

Object-Orientation - Advantages
 People think in terms of objects

 OO models map to reality

 Therefore, OO models are

 easy to develop

 easy to understand

What is an Object?
An object is

 Something tangible (Ali, Car)

 Something that can be apprehended intellectually (Time, Date)

Object
An object has

 State (attributes)

 Well-defined behavior (operations)

 Unique identity

Example – Ali is a Tangible Object
 State (attributes)

 Name

 Age

 behavior (operations)

 Walks

 Eats

 Identity

 His name

Example – Car is a Tangible Object
 State (attributes)

- Color

- Model

 behavior (operations)

- Accelerate - Start Car

- Change Gear

 Identity

- Its registration number

Example – Time is an Object Apprehended Intellectually

 State (attributes)

- Hours - Seconds

- Minutes

 behaviour (operations)

- Set Hours - Set Seconds

- Set Minutes

 Identity

- Would have a unique ID in the model

Example – Date is an Object Apprehended Intellectually

 State (attributes)

- Year - Day

- Month

 behaviour (operations)

- Set Year - Set Day

- Set Month

 Identity

- Would have a unique ID in the model

Data Abstraction

Characteristics of a

Person

Name

Address

Age

Height

Hair color

Characteristics of a

Customer of a car

dealership

Name

Address

Data Abstraction (Contd...)

Attributes Actions

Name of the Customer Accept name of the customer

Address of the Customer Accept address of the customer

Model of the car bought Accept the model of the car purchased

Salesman who sold the car Accept the salesman name who sold the

car

Generate the bill

Data Abstraction (Cont…)
 Data Abstraction is the process of identifying and

grouping attributes and actions related to a particular
entity as relevant to the application at hand

 Advantages

 It focuses on the problem

 It identifies the essential characteristics and actions

 It helps to eliminate unnecessary detail

Method Overloading
 is defining different versions of a method in class, and the compiler will

automatically select the most appropriate one based on the parameters supplied

 Method overloading is achieved by passing:
 Different types of parameters

 Different number of parameters

 Different sequence of parameters

void display(); // Display methods

void display(int a, int b, int c);

void display(int one, char two);

void display(char one, int two);

Advantages
 Eliminates use of different method names for the same operation

 Helps to understand and debug code easily

 Maintaining code is easier

Overloading using different Data Types

int square(int);

float square(bool);

double square(char);

The compiler can distinguish between overloaded

methods with same number of arguments provided

their type is different

Overloading using Different Number/Sequence of Arguments

int square(int, char)

Int square(char,int)

int square(int,int, int)

int asq=square(3,’a’)

int bsq=square(1,2,3)

int asq=square(’a’,3)

At compile time, compiler compares the types of

actual arguments with the types of formal arguments

of all methods called square

Construction
 The process of bringing an object into existence is

called Construction

 A Constructor

 Allocates memory

 Initializes attributes, if any

 Enables access to attributes and methods

Destruction

 The process of deleting an object is called Destruction

 A Destructor

 Frees allocated space

 Disables access to attributes and methods

Constructors

 They are special types of methods in a class.

 They are generally used for initialization.

 They return no value.

 They are called every time an object is created.

 They have the same name as the class.

Constructors
A constructor is a special method for automatic

initialization of an object

class username{

.

username() //constructor

{

……

…..//Code written

}

};

General syntax for constructors is:

Default Constructor in Java

Java
Constructor for the

class Object

Defines constructor

No

Default

constructor not

used

If we do not define any constructor then Java invokes default

constructor for the class

Default Constructor in Java
class Sdate {

int month;

int day;

int year;

Sdate() //Constructor

{

month=11;

day=27;

year=1969;

}

public static void main(String args[])

{

Sdate S1,S2;

S1=new Sdate();

S2=new Sdate();

}

}

Parameterized Constructor
Constructors defined with parameters are known as parameterized

constructor

class Sdate {

int month;

int day;

int year;

Sdate(int m,int d,int y){

month=m;

day=d;

year=y;

}

public static void main(String args[]) {

Sdate S1,S2;

S1=new Sdate(11,27,1969);

S2=new Sdate(3,3,1973);

}

Static Constructors
 They will be called only once before the first

object is created.

 They can be declared in the same way as a
static method is declared.

 They cannot have any parameters.

 A static constructor is used to initialize any static
data, or to perform a particular action that needs to
be performed only once.

Private Constructors

 The addition of the private access modifier does not make any
difference to the accessibility of the constructor.

Private constructors are used to prevent creating instances of a

class when there are no instance fields or methods, such as the

Math class, or when a method is called to obtain an instance of a

class. If all the methods in the class are static, consider making the

complete class static.

Destructors

 They are called by Garbage Collector in Java

 Garbage Collector frees memory by destroying
objects that are no longer required/referenced.

Destructors

Destructor

object

Has to be

destroyed

complier

memory

De-allocates

calls

A constructor can be explicitly called at the time of

initialisation, as we have seen earlier, but a

destructor cannot be directly called from the class.

Memory allocation for an Object

Program Creats

According to the

definition given in the

Class.

object

It is useful to create a new object that will exist

only as long as it is needed, otherwise huge

memory will be occupied by all these unused

objects.

Allocating Memory

new Memory

space

object

Syntax: Student stu_ptr=new Student()

int[] p = new int[3];

Allocating Memory

class Sdate {

int[] date;

Sdate(int m,int d,int y) {

date = new int[3];

date[0]=m;

date[1]=d;

date[2]=y;

}

}

class Newdate {

public static void main(String args[]) {

Sdate S1,S2;

S1=new Sdate(11,27,1967);

S2=new Sdate(4,3,1973);

}

}

De-allocating Memory

memory

object
Garbage collection

 The working of garbage collector is as follows:

• An object with a destructor defined is added to a list
of objects that require destruction.

• Garbage collector starts on its rounds and checks if
there are objects that have no references.

• If an object is found and if the name of the object does
not appear in the finalizer list then it is cleared
up instantly.

Garbage Collector (1)

• If the name of the object appears on the list of objects
that require finalization, it is marked as
“Ready for Finalization”.

• When the garbage collection is complete then the
finalizer thread is called, which goes about calling the
finalize methods of all objects that have been marked
as “Ready for Finalization”.

• After the finalization of an object has occurred, it is
removed from the list of objects, which require finalization.

• Since the object is no longer on the finalizer list, it gets
cleaned up when the next garbage collection is done.

Garbage Collector (2)

 Objects with finalize method take up more resources as
they stay for a longer period in memory even when they are
not required.

 Finalization takes place as a separate thread, again
eating into the resources.

Garbage Collector (3)

Finalize method

Protected void finalize()

{

//finalization code

}

java
Finalization

mechanism
Defines finalize()

method in our class

Information Hiding

 Information is stored within the object

 It is hidden from the outside world

 It can only be manipulated by the object itself

Example – Information Hiding

 Ali’s name is stored within his brain

 We can’t access his name directly

 Rather we can ask him to tell his name

Example – Information Hiding

 A phone stores several phone numbers

 We can’t read the numbers directly from the SIM card

 Rather phone-set reads this information for us

Information Hiding Advantages

 Simplifies the model by hiding implementation details

 It is a barrier against change propagation

Encapsulation

 Data and behavior are tightly coupled inside an object

 Both the information structure and implementation details of its operations are

hidden from the outer world

Example – Encapsulation

 Ali stores his personal information and knows how to translate it to the desired

language

 We don’t know

 How the data is stored

 How Ali translates this information

Example – Encapsulation
 A Phone stores phone numbers in digital format and knows how to convert it

into human-readable characters

 We don’t know

 How the data is stored

 How it is converted to human-readable characters

Encapsulation – Advantages

 Simplicity and clarity

 Low complexity

 Better understanding

Object has an Interface

 An object encapsulates data and behavior

 So how objects interact with each other?

 Each object provides an interface (operations)

 Other objects communicate through this interface

Example – Interface of a Car
 Steer Wheels

 Accelerate

 Change Gear

 Apply Brakes

 Turn Lights On/Off

Example – Interface of a Phone
 Input Number

 Place Call

 Disconnect Call

 Add number to address book

 Remove number

 Update number

Implementation
 Provides services offered by the object interface

 This includes

 Data structures to hold object state

 Functionality that provides required services

Example – Implementation of Gear Box

 Data Structure

 Mechanical structure of gear box

 Functionality

 Mechanism to change gear

Example – Implementation of Address Book in a Phone

 Data Structure

 SIM card

 Functionality

 Read/write circuitry

Separation of Interface & Implementation

 Means change in implementation does not effect object interface

 This is achieved via principles of information hiding and encapsulation

Example – Separation of Interface &

Implementation

 A driver can drive a car independent of engine type (petrol, diesel)

 Because interface does not change with the implementation

Example – Separation of Interface &

Implementation

 A driver can apply brakes independent of brakes type (simple, disk)

 Again, reason is the same interface

Advantages of Separation
 Users need not to worry about a change until the interface is same

 Low Complexity

 Direct access to information structure of an object can produce errors

