
Session 1-2
Programming and Java

JDK/J2SE Versions

Object Oriented Programming
Spring-2022 2

Source: https://en.wikipedia.org/wiki/Java_version_history

Version Date

JDK Beta 1995

JDK 1.0 January 23, 1996[40]

JDK 1.1 February 19, 1997

J2SE 1.2 December 8, 1998

J2SE 1.3 May 8, 2000

J2SE 1.4 February 6, 2002

J2SE 5.0 September 30, 2004

Java SE 6 December 11, 2006

Java SE 7 July 28, 2011

Java SE 8 (LTS) March 18, 2014

Java SE 9 September 21, 2017

Java SE 10 March 20, 2018

Java SE 11 (LTS) September 25, 2018[41]

Java SE 12 March 19, 2019

Java SE 13 September 17, 2019

Java SE 14 March 17, 2020

Java SE 15 September 15, 2020[42]

Java SE 16 March 16, 2021

Java SE 17 (LTS) September 14, 2021

Java SE 18 March 2022

https://en.wikipedia.org/wiki/Beta_version
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-40
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-41
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-42

Object Oriented Programming
Spring-2022 3

JDK Editions

• Java Standard Edition (J2SE)

– J2SE can be used to develop client-side standalone applications or applets.

• Java Enterprise Edition (J2EE)
– J2EE can be used to develop server-side applications such as Java servlets

and Java ServerPages.

• Java Micro Edition (J2ME)
– J2ME can be used to develop applications for mobile and embedded

devices devices such as cell phones.

Object Oriented Programming
Spring-2022 4

Java IDE Tools

• Borland JBuilder

• NetBeans Open Source by Sun

• Sun ONE Studio by Sun MicroSystems

• Eclipse Open Source by IBM

A Simple Java Program

//This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

Object Oriented Programming
Spring-2022 5

Creating and Editing Using NotePad

To use NotePad, type

notepad Welcome.java

from the DOS prompt.

Object Oriented Programming
Spring-2022 6

Creating and Editing Using WordPad

To use WordPad, type

write Welcome.java

from the DOS prompt.

Object Oriented Programming
Spring-2022 7

Java Compilation

Object Oriented Programming
Spring-2022 8

Creating, Compiling, and Running
Programs

Source Code

Create/Modify Source Code

Compile Source Code

i.e., javac Welcome.java

Bytecode

Run Byteode

i.e., java Welcome

Result

If compilationerrors

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");
}
}

…

Method Welcome()

0 aload_0
…

Method void main(java.lang.String[])

0 getstatic #2 …
3 ldc #3 <String "Welcome to

Java!">

5 invokevirtual #4 …

Saved on the disk

stored on thedisk

Source code (developed by the programmer)

Byte code (generated by the compiler for JVM

to read and interpret, not for you to understand)

41
Object Oriented Programming

Spring-2022 9

//This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

Trace a Program Execution

print a message to the
console

Object Oriented Programming
Spring-2022 10

Compiling and Running Java from the
Command Window

• Set path to JDK bin directory

– set path=c:\Program Files\java\jdk1.8.0\bin

• Compile

– javac Welcome.java

• Run

– java Welcome

Object Oriented Programming
Spring-2022 11

Compiling and Running Java from
TextPad

Object Oriented Programming
Spring-2022 12

Compiling and Running Java from
JBuilder

Object Oriented Programming
Spring-2022 13

Compiling and Running Java from
NetBeans

Object Oriented Programming
Spring-2022 14

Reading input in JAVA

Object Oriented Programming
Spring-2022 15

READING INPUT FROM THE input

Object Oriented Programming
Spring-2022 16

• Previously, we have seen the standard output device is a
console window and the System.out object is associated with
the standard output device.

• The standard input device is normally the computer input.

• The Java API has an object System.in which is associated with
the standard input device.

READING INPUT FROM THE input
The Scanner Class

Object Oriented Programming
Spring-2022 17

• We will use the System.in object in conjunction with the
Scanner class to read input data from the input.

• The Scanner class has methods that can be used to read input
and format it as either a value of a primitive data type or a
String.

READING INPUT FROM THE input
The Scanner Class

Object Oriented Programming
Spring-2022 18

• To use the Scanner class in our program we must put the
following statement near the top of our file, before any class
definition:

import java.util.Scanner;

This statement tells the compiler where to find the Scanner
class in the Java API.

READING INPUT FROM THE input
The Scanner Class

Object Oriented Programming
Spring-2022 19

• You must also create a Scanner object and connect it to the
System.in object. You can do this with a statement like the
following:

method before you

Scanner input= new Scanner(System.in);

Create this object inside your main
attempt to read anything from the input.

READING INPUT FROM THE input
The Scanner Class

Object Oriented Programming
Spring-2022 20

• The words Scanner input declare a variable named input of
type Scanner. This variable will reference an object of the
Scanner class.

Scanner input= new Scanner(System.in);

You could have chosen any name you wanted for the variable,
but input is a good one since you are going to use it to access
the keyboard i.e. an input device.

READING INPUT FROM THE input
The Scanner Class

Object Oriented Programming
Spring-2022 21

Scanner input= new Scanner(System.in);

• The new key word is used to create an object in memory.

• In the statement above we are creating an object of the Scanner class.

• Inside the parentheses, we have System.in. Here we are saying that we
want the object we are creating to be connected with the System.in
object, which again is associated with the keyboard.

• We are assigning the address of the object created using the new operator
to our variable named input, so input now references the object we have
linked with the actual keyboard.

READING INPUT FROM THE input
The Scanner Class

Object Oriented Programming
Spring-2022 22

• Every object created from the Scanner class has methods that
read a string of characters entered at the input, convert them
to a specified type, and return the converted value. This value
can be stored in a variable of compatible type.

READING INPUT FROM THE input
The Scanner Class

Object Oriented Programming
Spring-2022 23

For example, the code below could be used to read an integer
entered at the input and store it in an integer variable named
age.

int age;

System.out.print(“Enter your age: “);

age = input.nextInt();

• The nextInt() method formats the characters entered by the
user as an int and returns the integer value.

• The integer value is assigned to the variable named age.

Object Oriented Programming
Spring-2022 24

READING INPUT FROM THE input
The Scanner Class

Object Oriented Programming
Spring-2022 25

• We can use the nextLine method of a Scanner object to
read a string of characters entered at the keyboard.

Example:

To get the user's first name we could write:

String firstName;

System.out.print("Enter your first name: ");

firstName = input.nextLine();

READING INPUT FROM THE input
The Scanner Class

• The nextLine method creates a String object in memory
that contains the sequence of characters entered at the
keyboard before the Enter key is pressed and returns the
address of this object.

Below we are assigning the address of the object created by the
nextLine method to the String reference variable named firstName.

String firstName;

System.out.print("Enter your first name: ");
firstName = input.nextLine();

The nextLine method creates a
String object in memory and returns

the address of the object created.

Object Oriented Programming
Spring-2022 26

READING INPUT FROM THE input
The Scanner Class

Object Oriented Programming
Spring-2022 27

• The Scanner class does not have a method for reading a
single character.

• In the text, they suggest using the Scanner classes
nextLine method to read the character as a string, and
then using the String classes charAt method to extract the
first character from the string. Remember, the first
character is at index 0.

60

READING A SINGLE CHARACTER ENTERED AT THE
input

Example:

String stringInitial;

char initial;

System.out.print("Enter your middle initial ");

stringInitial = input.nextLine();

initial = stringInitial.charAt(0);

60
Spring-2020

Object Oriented Programming
Object Oriented Programming

Spring-2022 28

Java Programming Constructs

Object Oriented Programming
Spring-2022 29

Object Oriented Programming
Spring-2022 30

Java Identifiers

• Identifiers
– Used to name local variables
– Names of attributes
– Names of classes

• Primitive Data Types Available in Java (size in bytes)
– byte (1), -128 to 127
– short (2), -32768 to 32767
– int (4), -2147483648 to 2147483647
– long (8), -9223372036854775808 to 9223372036854775807
– float (4), -3.4E38 to 3.4E38, 7 digit precision
– double (8), -1.7E308 to 1.7E308, 17 digits precision
– char (2), unicode characters
– boolean (true, false), discrete values

Object Oriented Programming
Spring-2022 31

Java Identifiers

• Naming Rules
– Must start with a letter
– After first letter, can consist of letters, digits (0,1,…,9)
– The underscore “_” and the dollar sign “$” are considered

letters

• Variables
– All variables must be declared in Java
– Can be declared almost anywhere (scope rules apply)
– Variables have default initialization values

• Integers: 0
• Reals: 0.0
• Boolean: False

– Variables can be initialized in the declaration

Object Oriented Programming
Spring-2022 32

Java Identifiers

• Example Declarations

int speed; // integer, defaults to 0

int speed = 100; // integer, init to 100

long distance = 3000000000L; // “L” needed for a long

float delta = 25.67f; // “f” needed for a float

double delta = 25.67; // Defaults to double

double bigDelta = 67.8E200d; // “d” is optional here

boolean status;

boolean status = true;

// defaults to “false”

• Potential Problems (for the C/C++ crew)

long double delta = 3.67E204; // No “long double” in

unsigned int = 4025890231;

Java

// No unsigned ints in
Java

Object Oriented Programming
Spring-2022 33

Java Types
• Arrays

int[] numbers = new int[n]

// Array of integers, size is n

– size can be computed at run time, but can't be changed
– allocated on heap (thus enabling run time size allocation)
– invalid array accesses detected at run time (e.g. numbers[6];)
– numbers.length; // read only variable specifying length of

array
– reference semantics

int[] winning_numbers;

winning_numbers = numbers; // refer to same array

numbers[0] = 13; // changes both

Object Oriented Programming
Spring-2022 34

Java Types

• Strings
String message = "Error " + errnum;

– strings are immutable – can't be changed, although
variables can be changed (and old string left for garbage
collection)

– message = "Next error " + errnum2;

– use StringBuffer to edit strings
StringBuffer buf = new StringBuffer(greeting);

buf.setCharAt(4, '?');

greeting = buf.toString();

Object Oriented Programming
Spring-2022 35

Java Types

• Strings
– String comparison

if (greeting == "hello") ….

// error, compares location only

if (greeting.equals("hello")) …. // OK

string1.compareTo(string2)

// negative if string1 < string 2;

// zero when equal,

// positive if string1 > string2

string1.substring(2, 6);

// return substring between position 2

and 5

Object Oriented Programming
Spring-2022 36

Java Statements

• Assignments
– General Format: variable = expression ;

Where variable is a previously declared identifier and

expression is a valid combo of identifiers, operators,

and method (a.k.a. procedure or function) calls

– Shortcuts:

var *= expr ; // Equivalent to var = var * (expr);

var /= expr ; // Equivalent to var = var / (expr);

var += expr ; // Equivalent to var = var + (expr);

var -= expr ; // Equivalent to var = var – (expr);

var %= expr ; // Equivalent to var = var % (expr);

var++; // Equivalent to var = var + 1;

var--; // Equivalent to var = var - 1;

Object Oriented Programming
Spring-2022 37

Java Conditional Constructs

• “if” Statements

– if with code block

if (boolean_expr)

{

statements

}

– if with single statement

if (boolean_expr)

statement;

Java Conditional Constructs

• if” Statements (Continued)

– if-else

if (boolean_expr)

{

statements for true

}

else

{

statements for false

}

if

statements

falsetrue

statements

Object Oriented Programming
Spring-2022 38

Object Oriented Programming
Spring-2022 39

Java Conditional Constructs

• Boolean Expressions

– Boolean expressions use conditional operators such that
they result in a value of true or false

– Conditional Operators (Not by order of precedence)

Operator Operation

== or != Equality, not equal

> or < Greater than, less than

>= or <= Greater than or equal, less than orequal

! Unary negation (NOT)

& or && Evaluation AND, short circuitAND

| or || Evaluation OR, short circuit OR

Java Conditional Constructs

• if-else” Statement Example
class Example

{

static public void main(String args[])

{

// A very contrived example

int i1 = 1, i2 = 2;

System.out.print(“Result: “);

if (i1 > i2)

{

System.out.println(“i1 > i2”);

>= i1”);

}

else

{

System.out.println(“i2

}

}

}

if

statements

falsetrue

statements

Object Oriented Programming
Spring-2022 40

Java Conditional Constructs
• The Switch Statement

switch (integer_expression)

{

case int_value_1:

statements

break;

case int_value_2:

statements

break;

…

case int_value_n:

statements

break;

default:

statements

}

if
true

statements

if

false

true
statements

if

false

true
statements

statements

false

Object Oriented Programming
Spring-2022 41

• Don’t forget the “break”

switch (integer_expression)

{

case int_value_1:

statements

// No break!

case int_value_2:

statements

break;

…

case int_value_n:

statements

break;

default:

statements

}

if
true

statements

if

false

true
statements

if

false

true
statements

statements

false

Object Oriented Programming
Spring-2022 42

Java Conditional Constructs
• Example

int n = 5;

switch (n)

{

case 1:

n = n + 1;

break;

case 5:

n = n + 2;

break;

default:

n = n – 1;

}

if
true

statements

if

false

true
statements

statements

false

Object Oriented Programming
Spring-2022 43

Java Conditional Constructs

• Example

char c = ‘b’;

int n = 0;

switch (c)

{

case ‘a’:

n = n + 1;

break;

case ‘b’:

n = n + 2;

break;

default:

n = n – 1;

}

if
true

statements

if

false

true
statements

statements

false

Object Oriented Programming
Spring-2022 44

Object Oriented Programming
Spring-2022 45

Java Looping Constructs

• while loop
– Exit condition evaluated at top

• do loop
– Exit condition evaluated at bottom

• for loop
– Exit condition evaluated at top
– Includes a initialization statements
– Includes a update statements for each iteration

Java Looping Constructs
• while loop

while (boolean_expr)

{

statements

}

• do loop

do

{

statements

}

while (boolean_expr)

if

statements

false

true

if

statements

false

true

78
Object Oriented Programming

Spring-2022 46

Java Looping Constructs

• for loop

for (init_stmnt; bool_expr; update_stmnt)

{

statements

}

if

statements

false

true

init

update

Object Oriented Programming
Spring-2022 47

Java Looping Constructsclass Example
{

static public void main(String args[])
{

int i = 0;
System.out.println("while loop");
while (i < 10)
{

System.out.println(i);
i++;

}

System.out.println("do loop");
do
{

System.out.println(i);
i--;

}

while (i > 0);

System.out.println("for loop");
for (i = 0; i < 10; i++)
{

System.out.println(i);
}

} // End main

} // End Example

Object Oriented Programming
Spring-2022 48

	Session 1-2
	JDK/J2SE Versions
	JDK Editions
	Java IDE Tools
	A Simple Java Program
	Creating and Editing Using NotePad
	Creating and Editing Using WordPad
	Java Compilation
	Creating, Compiling, and Running Programs
	Trace a Program Execution
	Compiling and Running Java from the Command Window
	Compiling and Running Java from TextPad
	Compiling and Running Java from JBuilder
	Compiling and Running Java from NetBeans
	Reading input in JAVA
	READING INPUT FROM THE input
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Java Programming Constructs
	Java Identifiers
	Java Identifiers
	Java Identifiers
	Java Types
	Java Types
	Java Types
	Java Statements
	Java Conditional Constructs
	Java Conditional Constructs
	Java Conditional Constructs
	Java Conditional Constructs
	Java Conditional Constructs
	Slide 42
	Java Conditional Constructs
	Java Conditional Constructs
	Java Looping Constructs
	Java Looping Constructs
	Java Looping Constructs
	Slide 48

