
Session 8

Introduction
 Rarely does a program runs successfully at its very

first attempt.

 It is common to make mistakes while developing
as well as typing a program.

 Such mistakes are categorised as:
1. syntax errors - compilation errors.

2. semantic errors– leads to programs producing
unexpected outputs.

3. runtime errors – most often lead to abnormal
termination of programs or even cause the system to
crash.

Introduction to Exception
 Is a special type of error

 It occurs at runtime in a code sequence

 Abnormal conditions that occur while executing
the program cause exceptions

 If these conditions are not dealt with, then the
execution can be terminated abruptly

Purpose of Exception handling
 Minimize the chances of a system crash, or abrupt

program termination

 For example,

In an I/O operation in a file. If the data type conversion
is not properly done, an exception occurs, and the
program aborts, without closing the file. This may
damage the file, and the resources allocated to the file
may not return to the system

Handling Exceptions
 When an exception occurs, an object that represents

that exception is created

 This object is then passed to the method where the
exception has occurred

 The object contains detailed information about the
exception. This information can be retrieved and
processed

 The ’throwable’ class that Java provides is the
superclass of the Exception class, which is, in turn,
the superclass of individual exceptions

Exception handling Model
 Is also known as the ‘catch and throw’ model

 When an error occurs, an ‘exception’ is thrown,
and caught in a block

 Keywords to handle exceptions
 try

 catch

 throw

 throws

 finally

Structure of the exception handling model

 Syntax

try { …. }

catch(Exception e1) { …. }

catch(Exception e2) { …. }

catch(Exception eN) { …. }

finally { …. }

Advantages of the ‘Catch and Throw’ Model

 The programmer has to deal with an error
condition only where necessary. It need not be
dealt with at every level

 An error message can be provided in the exception-
handler

‘try’ and ‘catch’ Blocks
 Is used to implement the ‘catch and throw’ model of

exception handling

 A ‘try’ block consists of a set of executable statements

 A method, which may throw an exception, can also be
included in the ‘try’ block

 One or more ‘catch’ blocks can follow a ‘try’ block

 These ‘catch’ blocks catch exceptions thrown in the
‘try’ block

try’ and ‘catch’ Blocks (Contd…)
 To catch any type of exception, specify the exception

type as ‘Exception’

catch(Exception e)

 When the type of exception being thrown is not known,
the class ‘Exception’ can be used to catch that exception

 The error passes through the ‘try catch’ block, until it
encounters a ‘catch’ that matches it, or the program
terminates

Multiple Catch Blocks
 Multiple ‘catch()’ blocks process various exception

types separately

 Example

try

{ doFileProcessing();

displayResults(); }

catch(LookupException e)

{ handleLookupException(e); }

catch(Exception e)

{ System.err.println(“Error:”+e.printStackTrace()); }

Multiple Catch Blocks (Contd…)
 When nested ‘try’ blocks are used, the inner ‘try’

block is executed first

 Any exception thrown in the inner ‘try’ block is
caught in the following ‘catch’ blocks

 If a matching ‘catch’ block is not found, then
‘catch’ blocks of the outer ‘try’ blocks are
inspected

 Otherwise, the Java Runtime Environment
handles the exception

Without Error Handling – Example 1

class NoErrorHandling{

public static void main(String[] args){

int a, b;

a = 7;

b = 0;

System.out.println(“Result is “ + a/b);

System.out.println(“Program reached this line”);

}

}

Program does not reach here

Exception in thread "main" java.lang.ArithmeticException: / by zero
at javaapplication2.JavaApplication2.main(JavaApplication2.java:63)

Java Result: 1

Traditional way of Error Handling - Example 2

class WithErrorHandling{

public static void main(String[] args){

int a, b;

a = 7; b = 0;

if (b != 0){

System.out.println(“Result is “ + a/b);

}

else{

System.out.println(“ B is zero);

}

System.out.println(“Program is complete”);

}

}

Program reaches here

Exceptions
 An exception is a condition that is caused by a

runtime error in the program.

 Provide a mechanism to signal errors directly without
using flags.

 Allow errors to be handled in one central part of the
code without cluttering code.

Exceptions and their Handling
 When the JVM encounters an error such as divide by zero,

it creates an exception object and throws it – as a
notification that an error has occurred.

 If the exception object is not caught and handled properly,
the interpreter will display an error and terminate the
program.

 If we want the program to continue with execution of the
remaining code, then we should try to catch the exception
object thrown by the error condition and then take
appropriate corrective actions. This task is known as
exception handling.

Common Java Exceptions
 ArithmeticException

 ArrayIndexOutOfBoundException

 FileNotFoundException

 IOException – general I/O failure

 NullPointerException – referencing a null object

 OutOfMemoryException

 SecurityException – when applet tries to perform an action
not allowed by the browser’s security setting.

 StringIndexOutOfBoundException

Exceptions in Java
 A method can signal an error condition by throwing an

exception – throws

 The calling method can transfer control to a exception
handler by catching an exception - try, catch

 Clean up can be done by - finally

Exception Handling Mechanism
try Block

Statements that causes
an exception

catch Block

Statements that
handle the exception

Throws
exception
Object

Syntax of Exception Handling Code
…

…

try {
// statements

}

catch(Exception-Type e)

{
// statements to process exception

}

..

..

With Exception Handling - Example 3
class WithExceptionHandling{

public static void main(String[] args){

int a,b; float r;

a = 7; b = 0;

try{

r = a/b;

System.out.println(“Result is “ + r);

}

catch(ArithmeticException e){

System.out.println(“ B is zero);

}

System.out.println(“Program reached this line”);

}

}

Program Reaches here

Program will not
Reaches here

Finding a Sum of Values Passed as Command Line Arguments

// ComLineSum.java: adding command line parameters
class ComLineSum
{

public static void main(String args[])
{

int InvalidCount = 0;
int number, sum = 0;

for(int i = 0; i < args.length; i++)
{

try {
number = Integer.parseInt(args[i]);

}
catch(NumberFormatException e)
{

InvalidCount++;
System.out.println("Invalid Number: "+args[i]);
continue;//skip the remaining part of loop

}
sum += number;

}
System.out.println("Number of Invalid Arguments = "+InvalidCount);
System.out.println("Number of Valid Arguments = "+(args.length-InvalidCount));
System.out.println("Sum of Valid Arguments = "+sum);

}
}

Sample Runs
C:>java ComLineSum 1 2
Number of Invalid Arguments = 0

Number of Valid Arguments = 2

Sum of Valid Arguments = 3

C:>java ComLineSum 1 2 abc
Invalid Number: abc

Number of Invalid Arguments = 1

Number of Valid Arguments = 2

Sum of Valid Arguments = 3

Multiple Catch Statements
 If a try block is likely to raise more than one type of exceptions, then

multiple catch blocks can be defined as follows:
…
…
try {

// statements

}
catch(Exception-Type1 e)
{

// statements to process exception 1

}
..
..
catch(Exception-TypeN e)
{

// statements to process exception N

}
…

‘finally’ Block
 Takes care of all the cleanup work when an exception

occurs

 Can be used in conjunction with a ‘try’ block

 Contains statements that either return resources to
the system, or print messages
 Closing a file

 Closing a result set (used in Database programming)

 Closing the connection established with the database

‘finally’ Block (Contd…)
 Is optional

 Is placed after the last ‘catch’ block

 The ‘finally’ block is guaranteed to run, whether or not
an exception occurs

finally block
 When a finally is defined, it is executed regardless of whether or not an

exception is thrown. Therefore, it is also used to perform certain house
keeping operations such as closing files and releasing system resources.

…
try {

// statements

}
catch(Exception-Type1 e)
{

// statements to process exception 1

}
..
..
finally {
….

}

User-defined Exceptions with ‘throw’ and
‘throws’ statements

 Exceptions are thrown with the help of the ‘throw’ keyword

 The ‘throw’ keyword indicates that an exception has
occurred

 The operand of throw is an object of a class, which is
derived from the class ‘Throwable’

 Example of the ‘throw’ statement
try{

if (flag < 0)

{

throw new MyException() ; // user-defined

}

}

User-defined Exceptions with ‘throw’ and
‘throws’ statements (Contd…)
 A single method may throw more than one exception

 Example of the ‘throw’ keyword to handle multiple
exceptions

public class Example {

public void exceptionExample() throws ExException,

LookupException {

try

{ // statements }

catch(ExException exmp)

{ …. }

catch(LookupException lkpex)

{ …. } } }

User-defined Exceptions with ‘throw’ and
‘throws’ statements (Contd…)

 The ‘Exception’ class implements the ‘Throwable’
interface, and provides some useful features for dealing
with exceptions

 Advantage of subclassing the Exception class is that the
new exception type can be caught separately from other
Throwable types

With Exception Handling - Example 4

class WithExceptionCatchThrow{

public static void main(String[] args){

int a,b; float r; a = 7; b = 0;

try{

r = a/b;

System.out.println(“Result is “ + r);

}

catch(ArithmeticException e){

System.out.println(“ B is zero);

throw e;

}

System.out.println(“Program is complete”);

}

}

Program Does Not
reach here
when exception occurs

With Exception Handling - Example 5
class WithExceptionCatchThrowFinally{

public static void main(String[] args){

int a,b; float r; a = 7; b = 0;

try{

r = a/b;

System.out.println(“Result is “ + r);

}

catch(ArithmeticException e){

System.out.println(“ B is zero);

throw e;

}

finally{

System.out.println(“Program is complete”);

}

}

}

Program reaches here

User-Defined Exceptions
 Problem Statement :

 Consider the example of the Circle class
 Circle class had the following constructor

public Circle(double centreX, double centreY,
double radius){

x = centreX; y = centreY; r = radius;
}

 How would we ensure that the radius is not zero or
negative?

Defining your own exceptions

import java.lang.Exception;

class InvalidRadiusException extends Exception {

private double r;

public InvalidRadiusException(double radius){

r = radius;

}

public void printError(){

System.out.println("Radius [" + r + "] is not valid");

}

}

Throwing the exception

class Circle {
double x, y, r;

public Circle (double centreX, double centreY, double
radius) throws InvalidRadiusException {

if (r <= 0) {
throw new InvalidRadiusException(radius);

}
else {

x = centreX ; y = centreY; r = radius;
}

}
}

Catching the exception

class CircleTest {

public static void main(String[] args){
try{

Circle c1 = new Circle(10, 10, -1);
System.out.println("Circle created");

}
catch(InvalidRadiusException e)
{

e.printError();
}

}
}

User-Defined Exceptions in standard format
class MyException extends Exception
{

MyException(String message)
{

super(message); // pass to superclass if parameter is not handled by used defined exception

}

}
class TestMyException {
…
try {

..
throw new MyException(“This is error message”);
}
catch(MyException e)
{

System.out.println(“Message is: “+e.getMessage());

}

}
} Get Message is a method defined in a standard

Exception class.

Summary
 A good programs does not produce unexpected

results.

 It is always a good practice to check for potential
problem spots in programs and guard against
program failures.

 Exceptions are mainly used to deal with runtime
errors.

 Exceptions also aid in debugging programs.

 Exception handling mechanisms can effectively
used to locate the type and place of errors.

Summary
 Try block, code that could have exceptions / errors

 Catch block(s), specify code to handle various
types of exceptions. First block to have appropriate
type of exception is invoked.

 If no ‘local’ catch found, exception propagates up
the method call stack, all the way to main()

 Any execution of try, normal completion, or catch
then transfers control on to finally block

