
Serialization in JAVA

Storing Objects/Structures in Files
 Many programs need to save information between

program runs

 Alternately, we may want one program to save
information for later use by another program

Serialization of Objects
 Java provides a way to save objects directly

 Saving an object with this approach is called serializing the object

 Serialization in other languages can be very difficult, because objects
may contain references to other objects. Java makes serialization
(almost) easy

 Any object that you plan to serialize must implement the
Serializable interface

Conditions for serializability
 If an object is to be serialized:

 The class must be declared as public

 The class must implement Serializable

 If the object is a sub type of another class, the parent
class must have a no-argument constructor

 All fields of the class must be serializable: either
primitive types or serializable objects

Implementing Serializable
 To “implement” an interface means to define all the methods declared

by that interface, but...

 The Serializable interface does not define any methods!

 Question: What possible use is there for an interface that
does not declare any methods?

 Answer: Serializable is used as flag to tell Java it
needs to do extra work with this class

 When an object implements Serializable, its state is
converted to a byte stream to be written to a file so
that the byte stream can be converted back into a
copy of the object when it is read from the file.

The Serializable Interface
 The Serializable interface is a marker interface.

 It has no methods, so you don't need to add additional

code in your class except that the class must implement

Serializable.

 You must also import java io which contains all the

streams needed.

The Object Streams
• You need to use the ObjectOutputStream class for

storing objects and the ObjectInputStream class for

restoring objects.

• These two classes are built upon several other classes.

A Serializable Version of a Circle Class

A Program to Save a SCircle Object

Cont….
public class FlightRecord2 implements Serializable

{

private String flightNumber; // ex. = AA123
private String origin; // origin airport; ex. = Khi
private String destination; // destination airport; ex. = Isl
private int numPassengers; // number of passengers
private double avgTicketPrice; // average ticket price

// Constructor

public FlightRecord2 (String startFlightNumber, String startOrigin, String
startDestination, int startNumPassengers, double startAvgTicketPrice)
{
flightNumber = startFlightNumber;

origin = startOrigin;
destination = startDestination;

numPassengers = startNumPassengers;
avgTicketPrice = startAvgTicketPrice;

}

Flight Record class

public String toString()
{
return "Flight " + flightNumber

+ ": from " + origin
+ " to " + destination
+ "\n\t" + numPassengers + " passengers";

}
// accessors, mutators, and other methods …

}

import java.io;

public class WritingObjects
{

public static void main(String [] args)
{
// instantiate the objects
FlightRecord2 fr1 = new FlightRecord2("AA31", “Khi", “Lhr",200, 13500);
FlightRecord2 fr2 = new FlightRecord2("CO25", “Lhr", “Isl",225, 11500);
FlightRecord2 fr3 = new FlightRecord2("US57", “Khi", “Isl"175, 17500);

try
{ FileOutputStream fos = new FileOutputStream(objects.dat);

ObjectOutputStream oos = new ObjectOutputStream(fos);

// write the objects to the file
oos.writeObject(fr1);
oos.writeObject(fr2);
oos.writeObject(fr3);

// release resources associated with the objects file
oos.close();

}

catch(FileNotFoundException e)
{

System.out.println("Unable to write to objects");
}
catch(IOException e)
{

ioe.printStackTrace();

}

}

}

Saving Hierarchical Objects
 Ensure that each of the objects involved implements the Serializable

interface

import java.io*;

public class SPoint implements Serializable

{

public int xValue; // this is for example only

public int yValue;

}

import java.io*;

public class SNewCircle implements Serializable

{

public SPoint location;

public float radius;

public boolean soldi;

}

// initialize location’s xValue and yValue

Reading Objects from a file
 ObjectInputStream reads objects from a file. The

readObject() method reads the next object from the file

and returns it.

 Because it returns a generic object, the returned object

must be cast to the appropriate class.

 When the end of file is reached, it throws an

EOFException versus when reading from a text file

where a null String is returned.

Reading objects from a file
ObjectInputStream objectIn = new

ObjectInputStream(new BufferedInputStream(

new FileInputStream(fileName)));

myObject = (itsType) objectIn.readObject();

// some code

objectIn.close();

import java.io.;

public class GetCircle

{

public static void main(String [] args)
{
SCircle s2 = new SCircle();

ObjectInputStream in =new ObjectInputStream(new

BufferedInputStream(new FileInputStream(Objects.dat)));
try {

s2 = (SCircle) in.readObject();

}

catch (Exception e) { System.out.println (“ Error in reading “ + e)

}

System.out.println(“ The value of xvalue is “ + s2.xValue;

System.out.println(“ The value of yvalue is “ + s2.yValue;

}

in.close();

}

import java.io.ObjectInputStream;

public class ReadingObjects
{
public static void main(String [] args)
{
try
{

FileInputStream fis = new FileInputStream(objects.dat);
ObjectInputStream ois = new ObjectInputStream(fis);
try
{
while (true)
{

// read object, type cast returned object to FlightRecord
FlightRecord2 temp = (FlightRecord2) ois.readObject();
// print the FlightRecord2 object read
System.out.println(temp);

}
} // end inner try block
catch(EOFException eofe)
{
System.out.println("End of the file reached");
}

catch(ClassNotFoundException e)
{
System.out.println(cnfe.getMessage());

}
finally
{

System.out.println("Closing file");
ois.close();

}
} // end outer try block
catch(FileNotFoundException e)
{

System.out.println("Unable to find objects");
}
catch(IOException ioe)
{

ioe.printStackTrace();
}

}
}

Reading Objects from a file.
 The while loop runs until the end of file is reached and an

exception is thrown

 Control goes to the catch block and will always execute in

a normal program run.

 The EOFException catch block must come before

IOException as it is subclass of IOException. Otherwise

the program will not produce the correct stack trace.

Output from reading objects
----jGRASP exec: java ReadingObjects

Flight AA31: from Khi to Lhr
200 passengers; average ticket price: 13500

Flight CO25: from Lhr to Isl
225 passengers; average ticket price: 11500

Flight US57: from Khi to Isl
175 passengers; average ticket price: 17500

End of the file reached // EOF exception caught
Closing file

21

Example-Serialization
public class Employee implements java.io.Serializable
{

public String name;
public String address;
public transient int SSN;
public int number;

public void mailCheck()
{

System.out.println("Mailing a check to " + name + " " + address);
}

}

Cont….
import java.io.*;

public class SerializeDemo

{

public static void main(String [] args)

{

Employee e = new Employee();

e.name = “Muhammad Shafan";

e.address = “DHA, Karachi";

e.SSN = 11122333;

e.number = 101;

try

{

FileOutputStream fileOut = new FileOutputStream("/tmp/employee.ser");

ObjectOutputStream out = new ObjectOutputStream(fileOut);

out.writeObject(e);
out.close();

fileOut.close();

System.out.println("Serialized data is saved in /tmp/employee.ser");

}catch(IOException i)

{

i.printStackTrace();

}

}

}

Example-Deserialization
import java.io.*;

public class DeserializeDemo

{

public static void main(String [] args)

{

Employee e = null;

try

{

FileInputStream fileIn = new
FileInputStream("/tmp/employee.ser");

ObjectInputStream in = new
ObjectInputStream(fileIn);

e = (Employee) in.readObject();

in.close();

fileIn.close();
}

catch(IOException i)
{

i.printStackTrace();
return;

}
catch(ClassNotFoundException c)

{
System.out.println("Employee class not found");
c.printStackTrace();
return;

}
System.out.println("Deserialized Employee...");
System.out.println("Name: " + e.name);
System.out.println("Address: " + e.address);
System.out.println("SSN: " + e.SSN);
System.out.println("Number: " + e.number);

}
}

