
Abstract Classes and Interfaces

Abstract Classes

 If a class contains one or more abstract methods
then the class has to be declared as an abstract
class

 Abstract classes provide the basic structure to its
sub-classes when it is inherited

 The abstract class cannot be instantiated using
new operator

 The constructor of an abstract class cannot be
declared abstract

Abstract Class

ClosedShape

Attributes…..

Draw()

DisplayArea

Square

Attributes…..

Draw()

DisplayArea

Circle

Attributes…..

Draw()

DisplayArea

Super class renders the class layout for sub class

Object instance of the Super class can not be

created.

Sub classes implements super class

methods , thus inherits the super

class properties and behaviour.

Abstract Class – An example
abstract class ClosedShapes

{

……………….// data members

……………. //Constructors for circle, rectangle …

abstract void draw(); //function in the base class

abstract void displayarea();

}

class Circle extends ClosedShapes{

Circle(int r) {

super(r); // calling super class constructor

}

void draw() {

System.out.println("Draw Circle with radius " +radius);

}

void displayarea() {

System.out.println("Area of Circle = " + 3.14*radius*radius);

}

}

Abstract Classes
 Like classes, they introduce types.

 but no objects can have as actual type the type of an abstract class.

 Why use them?
 Because there is a set of common features and implementation for

all derived classes but...

 We want to prevent users from handling objects that are too
generic

 We cannot give a full implementation for the class

AbstractClass

Italics indicates
abstract

Example 1
 The problem:

 Students are either undergraduate, PhD or MS(SE).

 We want to guarantee that nobody creates a Student object. The
application always creates a specific kind of Student.

 The solution:
 Declare Student as abstract.

 Why have the Student class in the first place?
 A common implementation of common aspects of all students.

(e.g. setLogin() and getLogin())

 To handle all students independently of their subclass using type
Student and polymorphism.

PhdStudent MS(SE)StudentUndergrad(BSE)

Student

getLogin()

setLogin(String)

Abstract Classes in Java
public abstract class Student {

protected String login, department, name;

public Student() {

login = “”; department = “”; name = “”;

}

public void setLogin(String login) {

this.login = login;

}

public String getLogin() {

return login;

}

}

PhdStudent

Student

getLogin()

setLogin(String)

public class PhdStudent extends Student{

private String supervisor;

public void setSupervisor(String login) {

...

PhdStudent is said
to be a concrete class

Example 2

 The Problem
 How do we calculate the area of an arbitrary shape?
 We cannot allow Shape objects, because we cannot provide a

reasonable implementation of getArea();

 The Solution
 So we declare the Shape to be an abstract class.
 Furthermore, we declare getArea() as an abstract method because

it has no implementation

 Why have the Shape class in the first place?
 Same reasons as for Student: a common implementation, a

placeholder in the hierarchy and polymorphism.
 Plus that we want to force all shapes to provide an implementation

for getArea();

Triangle CircleRectangle Hexagon

getArea(): double

setColour(int)

Shape

Abstract Methods in Java
public abstract class Shape {

final static int BLACK = 0;

private int colour;

public Shape() {

colour = BLACK;

}

public void setColour(int c) {

this.colour = c;

}

public abstract double getArea();

}

public class Circle extends Shape {

final static double PI = 3.1419;

private int radius;

public Circle(int r) {

radius = r;

}

public double getArea() {

return (radius^2)*PI;

}

}

getArea(): double

setColour(int)

Shape

Circle

If Circle did not implement getArea() then
it would have to be declared abstract too!

Abstract methods
have no body

Abstract Classes
 What are the differences between both examples?

 In Example 1

 I choose to declare Student abstract because I think it is
convenient to prevent the existence of plain Students

 In Example 2

 I must declare Shape abstract because it lacks an
implementation for getArea();

Using abstract classes

 Class Shape cannot be instantiated (it provides a partial
implementation)

 Abstract methods can be called on an object of apparent
type Shape (they are provided by Circle) (Polymorphism)

// Shape s = new Shape(); // ERROR

Shape s = new Circle(4); // Ok

double area = s.getArea(); // Ok – Remember polymorphism?

Circle c = new Circle(3); // Ok

c.setColour(GREEN); // Ok

area = c.getArea(); // Ok

Abstract Base Classes – C#

 Abstract classes are classes that can be
inherited from, but objects of that class cannot
be created.

 C# allows creation of Abstract Base classes by
an addition of the abstract modifier to the class
definition.

Abstract Base Classes (2)

Interfaces
 An interface is a set of methods and constants that is

identified with a name.

 They are similar to abstract classes
 You cannot instantiate interfaces
 An interface introduces types
 But, they are completely abstract (no implementation)

 Classes and abstract classes realize or implement
interfaces.
 They must have (at least) all the methods and constants of the

interface with public visibility

interface

Clock

setTime(Time):void

MIDNIGHT:Time

Interfaces
Abstracting the implementation of a class enriches the data

hiding principles.

Calculator

Number A

Number B

Add()

Subtract()

Multiply()

Calculator

Number A

Number B

Add()

Subtract()

Multiply()

Class and Object Component

Features of Interface

 Are similar to a class but they do not contain instance
variables and the methods contained in them

 Are similar to abstract classes with all methods declared
as abstract

 Are support dynamic method resolution at run time

 Disconnect the definition of a method from the
inheritance hierarchy

 Possible for classes

Defining an Interface
<access Specifier> interface <name>
{

final <data type> variable name = value;
<access specifier> <return type> method name(parameter list)

}

Example:

interface Student

{

void Learn(String sub);

}

Implementing an Interface

interface Area

{

final double pi=3.14;

void displayarea();

}

class Circle implements Area {

private int radius;

Circle(int r)

{

radius=r;

}

public void displayarea()

{

System.out.println("Area of Circle = " + pi*radius*radius);

}

}

Implementing an Interface

class Rectangle implements Area

{

private int length;

private int width;

Rectangle(int l, int w)

{

length=l;

width=w;

}

public void displayarea()

{

System.out.println("Area of Rectangle=" + length*width);

}

}

Implementing an Interface

class DemoInterface

{

public static void main(String args[])

{

Circle c = new Circle(5);

Rectangle s = new Rectangle(10,20);

Area ref;

ref = c;

c.displayarea();

ref = s;

s.displayarea();

}

}

Multiple Inheritance

StudentTeacher

Teaching

assistant

Base

class

Base

class

Derived class

The process of deriving from more than

base class is called multiple inheritance

How Multiple Inheritance is implemented in Java

ClosedShape

Attributes…..

Draw()

DisplayArea

Rectangle

Attributes……

Draw()

CalculateArea

Circle

Attributes….

Draw()

CalculateArea

Area

CalculateArea

Area

CalculateArea

Important Issues on Interfaces
When interface is implemented through a class, the instance of that

class can be created and stored in a variable of that interface type.

interface Infa { void print(); }

class Clsb implements Infa

{

public void print()

{ System.out.println(“This is implemented in class B”);

}

}

class Test {

public static void main(String args[]) {

Infa A=new Clsb();

A.print();

}

}

Important Issues on Interfaces
Interfaces can be extended. Therefore one interface can be

derived from another interface. Interfaces behave same as

classes in inheritance hierarchy.

interface infA {

void printA();

}

interface infB extends infA {

void printB();

}

class ClsTest implements infB

{

public void printA() {

System.out.println("This is declared in interface A");

}

Important Issues on Interfaces

public void printB()

{

System.out.println("This is declared in interface B");

}

}

class TestExtend

{

public static void main(String args[])

{

ClsTest A=new ClsTest();

A.printA();

A.printB();

}

}

Why use Interfaces?
 To separate (decouple) the specification available to the user

from implementation
 I can use any class that implements the interface through the

interface type (i.e. polymorphism)

 As a partial solution to Java’s lack of multiple inheritance

user

uses
interface {
…
}

realised
(implemented)

class

class

Multiple Interfaces
 Classes are allowed to implement multiple interfaces

interface
StopWatch

+start()
+stop():

interface
AlarmClock

+setTime()
+setAlarm():

MultiFunctionWatch
Q: Why is this
not the same
as multiple
inheritance?

A: There is no
implementation
to inherit

Review-Interfaces with C#

 An interface is a pure abstract base class.

 It can contain only abstract methods, and
no method implementation.

 A class that implements a particular interface
must implement the members listed by that
interface.

Interfaces (2)

 If we merge the last two codes and compile
them, we will get the following output:

 Take another example:

Interfaces

 Now, if we need to inherit a class, MyImages……

Interfaces (4)

 The output of the example is:

Interfaces (5)

Multiple Interface Implementation (1)

 C# allows multiple interface implementations.

Multiple Interface Implementation (2)

Explicit Interface Implementation

 Explicit interface implementation can be used when a
method with same name is available in 2 interfaces.

Interface Inheritance

 New Interfaces can be created by combining
together other interfaces.

Abstract classes vs. Interfaces

 Can have data fields

 Methods may have an
implementation

 Classes and abstract classes
extend abstract classes.

 Class cannot extend
multiple abstract classes

 Can only have constants

 Methods have no
implementation

 Classes and abstract
classes implement
interfaces

 Interfaces can extend
multiple interfaces

 A class can implement
multiple interfaces

