
Session 7

Session Objectives
 Describes inheritance

 Discuss need for inheritance

 Describe types of inheritance

 Implement inheritance using Java

 Describe how to access members ininheritance

 Implement Super()

 Determine the calling sequence ofconstructors

Features of an Object
 An object must combine data and behavior

 Objects must focus on essential properties
ignoring any accidental properties

 Object must hide the implementation details
from the rest of the world. It may expose certain
functionalities to otherobjects

 Object must understand messages from other
objects and can pass messages to other objects .

 An object can be reused on any future project

Inheritance

Class Employee

Name

Age

Employee id

Salary

Department

Director

Manager

Secretary

Clerk

Common to

Inheritance

Employee

Director Manager Secretary Clerk

Each of the sub-classes is considered to be derived from the parent class Employee

Inheritance

Inheritance is the property that allows the reuse of an existing class to build a new

class

Base Class

Methods

and Properties

Derived class

Base class methods +

Additional methods

Advantages of Inheritance
 Reusability of code

 The base class need not be changed but can be
adapted to suit the requirements in different
applications

 Saves developers time and effort so that they need not
to spend time to know the core technical facts

Generalization and Specialization

Class: Manager

Name, Age, Emp_id, Salary,

Department,

perks, no_of_employees

reporting

Class: Employee

Name, Age, Emp_id

Salary, Department

Base Class and Derived Class
class Employee{ //Base Class

String Name;

int Age;

String emp_id;

Float Salary;

public void create()

{ ….. }

public void resign()

{ ……. }

}

class Manger extends Employee{ //Subclass

float perks;

int no_of_employees;

public void report() { ……………… }

}

Types of Inheritance

Inheritance

Multilevel Inheritance

Single Inheritance

Multiple Inheritance

Hierarchical Inheritance

Single Inheritance

A

B

The son will have his own features as well as features of the father

…… }

extends A

class A

{

class B

{ …. }

Multilevel Inheritance
A

B

C

class A

{ …………… }

class B extends A

{ …………..}

class C extends B{

………………}

Hierarchical Inheritance

A

B C

D E

class A

{ …………… }

class B extends A

{ …………..}

class C extends A

{ ………………}

class D extends C

{ ………………}

class E extends C

{ ………………}

Single Level Inheritance in Java

class Container{

int width;

int height;

int depth;

Container() //default constructor

{

System.out.println(“Default object created with zero

dimension”);

width=0;

height=0;

depth=0;

}

Container(Container C) //Pass object to constructor

Single Level Inheritance
{

width=C.width;

height=C.height;

depth=C.depth;

}

Container(int W, int H, int D)//Pass values to

constructor

{

width=W;

height=H;

depth=D;

}

Container(int C) //Constructor for Cube

{

// In Cube width=height=depth

width=C;

height=C;

depth=C;

}

Single Level Inheritance
long getVolume()

{

return width*height*depth;

}

}

class Containerweight extends Container {

int filledweight;

Containerweight(int W, int H, int D, int WT)

{

width=W;

height=H;

depth=D;

filledweight=WT;

System.out.println(“This is from the derived

class”);

}

}

Single Level Inheritance
class DemoSingleInh

{

public static void main(String args[])

{

//Creating Base class object created

Containerweight containerX = new

Containerweight(10,20,15,35);

long vol;

vol = containerX.getVolume();

System.out.println(“Volume of container = “ +

vol);

System.out.println(“Weight of container = “ +

containerX.filledweight);

}

}

Multi-level Inheritance
class Container{

int width;

int height;

int depth;

Container() //default constructor

{

System.out.println(“Default object created with zero

dimension”);

width=0;

height=0;

depth=0;

}

Container(Container C) //Pass object to constructor

{

width=C.width;

height=C.height;

depth=C.depth;

Multi-level Inheritance
Container(int W, int H, int D)//Pass values to constructor

{

width=W;

height=H;

depth=D;

}

Container(int C) //Constructor for Cube

{

// In Cube all width=height=depth

width=C;

height=C;

depth=C;

}

long getVolume()

{ return width*height*depth; }

Multi-level Inheritance
}

class Containerweight extends Container

{

int filledweight;

Containerweight(int W, int H, int D, int WT)

{

width=W;

height=H;

depth=D;

filledweight=WT;

System.out.println(“This is from the derived class”);

}

}

class Shipment extends Containerweight {

int cost;

Shipment(int W, int H, int D, int WT, int C) {

Multi-level Inheritance
width=W;

height=H;

depth=D;

filledweight=WT;

cost=C;

System.out.println(“This is from the derived class”);

}

}

class DemoMultilevelInh{

public static void main(String args[])

{

Shipment shipcontainerX = new Shipment(5,10,7,20,4);

long vol;

vol = shipcontainerX.getVolume();

System.out.println(“Volume of container = “ + vol);

System.out.println(“Weight of container = “ +

shipcontainerX.weight);

}

}

Hierarchical Inheritance

Container

BoxContainer DrumContainer

ContainerWeight ContainerServicing

Hierarchical Inheritance

…………………………

class Container

{

String containerNo;

Container(String S)

{…………………………}

SetContainerNo(String S){

}

getContainerNo()

{

return containerNo;

}

}

Hierarchical Inheritance
class BoxContainer extends Container{

int width;

int height;

int depth;

Boxcotainer() { ……… }//default constructor

Boxcontainer(int W, int H, int D,String S)//Pass values to

constructor

{……..}

long getVolume()

{

……………………….. }

}

Hierarchical Inheritance

}

class Containerweight extends BoxContainer

{

int filledweight;

Containerweight(int W, int H, int D, int WT)

{ ………………………….. }

}

class ContainerServicing extends BoxContainer {

int servicvecost;

Shipment(………………….)

{ ……………………………………….. }

int getServiceCost(){………..}}

………………………..

……………………………………………

Rules for Access modifiers
The methods of the derived class can access members of

the base class if its members are public.

private. Because the derived class members

The private keyword makes a member of a class really

cannot

access the private members of the base class.

scope of the base class has to be broader thanThe

that of derived class. For

has private as its access

example, If the base class

specifier then the derived

class cannot have the access specifier as public.

Class members can always be accessed by

their own class, whether the

methods of

members are private or

public. But the inherited class’s object can access

base class members only if the members are public or

protected.

Rules for Access modifiers

members of a class can be accessed by objects orProtected

functions from its sub-classes. However, the difference

between them appears only in derived classes.

Private members of a class cannot be derived, only public

and protected members of a class can be derived”

Access modifiers
//base classclass Employee{

private int privA;

protected int protA;

public int pubA;

public static void main(String args[])

{

Employee emp = new Employee(); //Object of base class type

emp.privA = 1; //valid

emp.protA = 1; //valid

emp.pubA = 1; //valid

Access modifiers
//object of derived class

//error:not accessible

//valid

//valid

Manager mgr = new Manager();

mgr.privA = 1;

mgr.protA = 1;

mgr.pubA = 1;

}}

//derived classclass Manager extends Employee{

void fn()

{ int a;

a = privA; //error:not accessible

a = protA; //valid

a

}

= pubA; //valid

}

Using Super

To initialize data members of the superclass which are hidden from the subclass

(because of their private access modifier) we can use the Super keyword.

Using Super we can save extra lines of coding

Data hiding principles can be restored using Super.

Using Super
class Container{ int width;

int height;

int depth;

Container() //default constructor

{

……..}

Container(Container C) {

width=C.width;

height=C.height;

depth=C.depth;

}

Container(int W, int H, int D) {

width=W;

height=H;

depth=D;

}

Using Super

of Base

Container(int C) {

width=C;

height=C;

depth=C;

}

long getVolume()

{ ……….}

}

}

class Containerweight extends Container {

int filledweight;

Containerweight() {

super();

filledweight=0;

System.out.println(“Calling default constructor

class from derived class”);

}

Using Super
Containerweight(int W, int H, int D, int WT) {

super(W,H,D);

filledweight=WT;

System.out.println(“Calling parameterised

constructor of Base class from derived class”);

}

Containerweight(Containerweight cobj) {

super(cobj);

filledweight=cobj.filledweight;

System.out.println(“Calling constructor of Base

class passing object from derived class”);

}

}

Using Superclass variable
class DemoSingleInh {

public static void main(String args[]) {

Containerweight containerX = new Containerweight(10,20,15,35);

Container Cobj=new Container();

long vol;

vol = containerX.getVolume();

System.out.println(“Volume of container = “ + vol);

System.out.println(“Weight of container = “ +

containerX.filledweight);

Cobj=containerX; //assign object of subclass to a super class reference.

vol = Cobj.getVolume();

System.out.println(“Volume of container(duplicate)= “+ vol);

of container(duplicate) =“ +/*System.out.println(“Weight

Cobj.filledweight); */

}

}

Using Super keyword
public class Room {

double height;

double length;

double width;

}

class bedroom extends Room

{

double height;

double length;

double width;

bedRoom() {

super.height //height in Room

//main method

…..

}

}

The super can be used in

another way – as reference.

The super calls members of

superclass from a derived

class.

super.member

Calling sequence of Constructor
class ShowSequence

{

public static void main(String args[])

{

//Creating Inherited class object

Shipment shipcontainerX =

new Shipment(5,10,7,20,4);

}

}

Containerweight

Shipment

Container Called first

Called second

Called finally

