

LECTURE 11 Analysis of Algorithms

ALGORITHM EFFICIENCY

Intuitively we see that binary search is much faster than linear search, but how do we analyze the efficiency of algorithms formally?

BIG – O NOTATION

- •The time required to solve a problem depends on more than only the number of operations it uses.
- The time also depends on the hardware and software used to run the program that implements the algorithm.
- •On a supercomputer we might be able to solve a problem of size n a million times faster than we can on a PC.
- •One of the advantages of using big-O notation, we do not have to worry about the hardware and software used to implement an algorithm.

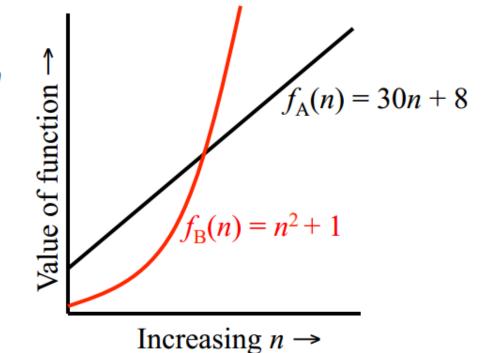
GROWTH OF FUNCTIONS

•Goal: To introduce the big-O notation and to show how to estimate the growth of functions using this notation and thereby to estimate the complexity (and hence the running time) of algorithms.

ORDERS OF GROWTH: MOTIVATION / VISUALIZATION

- Suppose you are designing a web site to process user data (*e.g.*, financial records).
- Suppose database program A takes
 f_A(n) = 30n + 8 microseconds to process any n records, while program B takes f_B(n) = n² + 1 microseconds to process the n records.
- Which program do you choose, knowing you'll want to support millions of users?

On a graph, as you go to the right, the faster growing function always eventually becomes the larger one...



- We say f_A(n) = 30n + 8 is (at most) order of n, or O(n).
 - It is, at most, roughly *proportional* to *n*.
- $f_{\rm B}(n) = n^2 + 1$ is order of n^2 , or $O(n^2)$.
 - It is (at most) roughly proportional to n^2 .
- Any function whose *exact* (tightest) order is O(n²) is faster-growing than any O(n) function.
- For large numbers of user records, the order n² function will always take more time.

BIG-O NOTATION

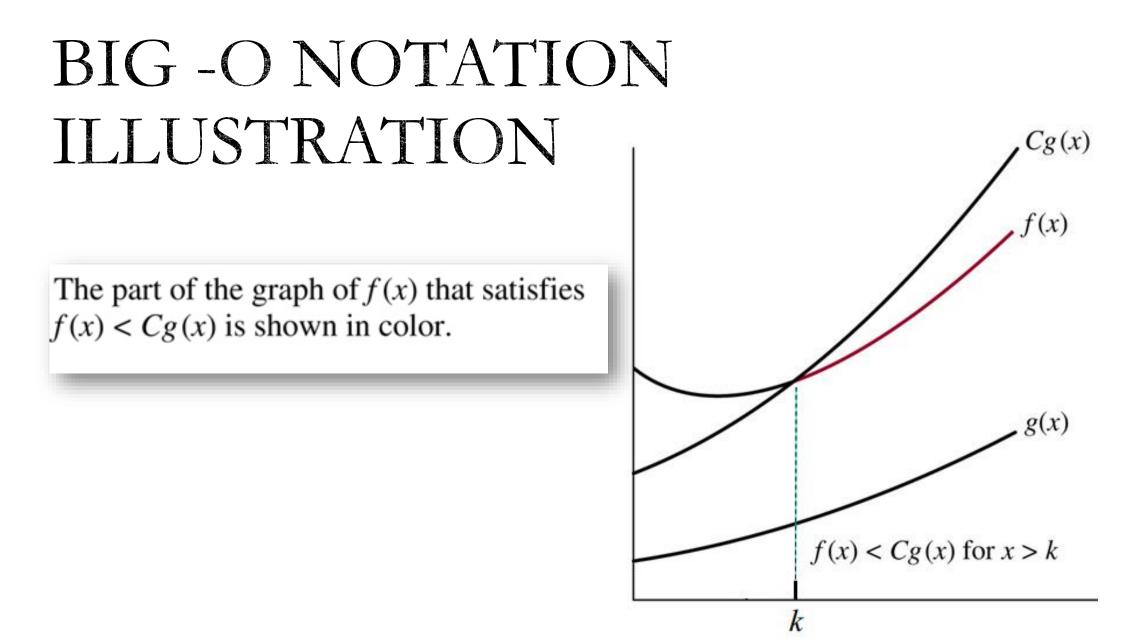
The growth of functions is often described using a special notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is O(g(x)) if there are constants C and k such that

 $|f(x)| \le C|g(x)|$

```
whenever x > k. [This is read as "f(x) is big-oh of g(x)."]
```

Remark: Intuitively, the definition that f(x) is O(g(x)) says that f(x) grows slower that some fixed multiple of g(x) as x grows without bound.



BIG -O NOTATION EXAMPLE

- Show that 30n + 8 is O(n).
 - Show $\exists C, k$ such that $\forall n > k$, $30n + 8 \le Cn$.

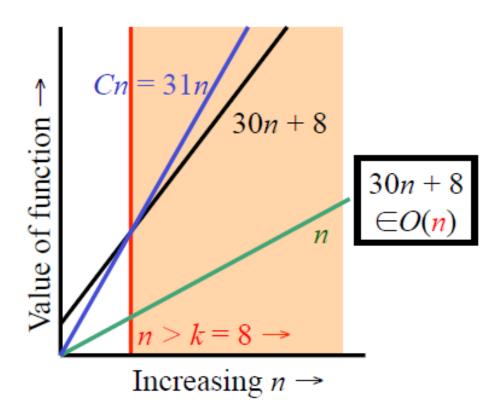
■ Let *k* = 8. Assume *n* > 8 (= *k*).

Then, 30n + 8 < 30n + n = 31n.

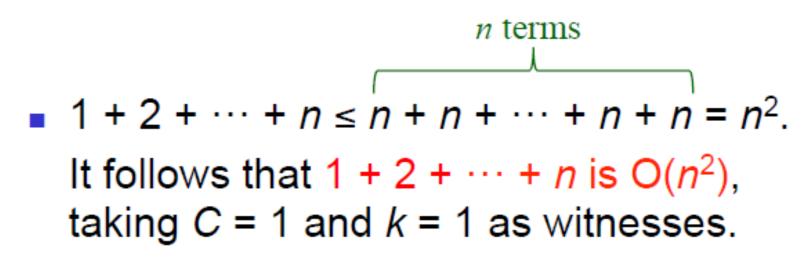
Therefore, we can take C = 31 and k = 8 to show that 30n + 8 is O(n).

BIG -O NOTATION EXAMPLE

- Note 30n + 8 isn't less than n anywhere (n > 0).
- It isn't even less than 31n everywhere.
- But it *is* less than
 31*n* everywhere to
 the right of *n* = 8.



BIG -O NOTATION EXAMPLE



Note:
$$1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

= $\frac{1}{2}n^2 + \frac{1}{2}n$

BIG- Ω NOTATION

- Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers.
- f(x) is $\Omega(g(x))$ if there are positive constants C and k such that $|f(x)| \ge C|g(x)|$ whenever x > k.
- This is read as "f(x) is big-Omega of g(x)."
- f(x) is $\Omega(g(x))$ if and only if g(x) is O(f(x))

BIG- Ω NOTATION

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Omega(g(x))$ if there are positive constants C and k such that

 $|f(x)| \ge C|g(x)|$

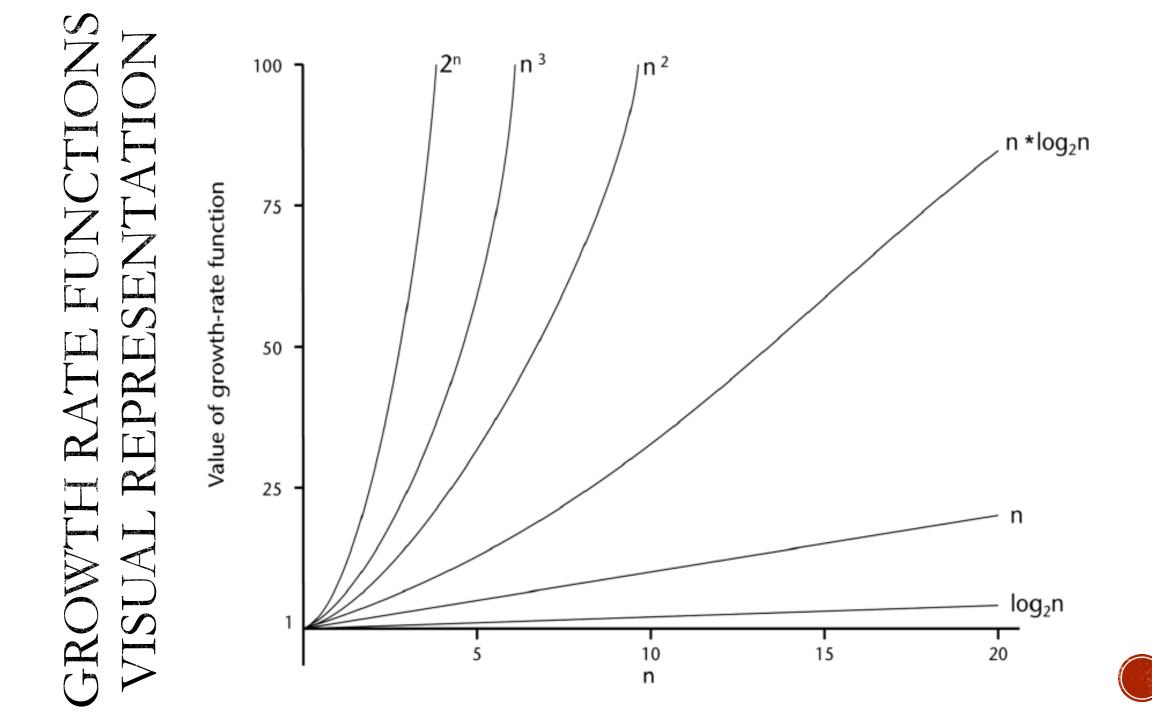
whenever x > k. [This is read as "f(x) is big-Omega of g(x)."]

BIG-@ NOTATION

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Theta(g(x))$ if f(x) is O(g(x)) and f(x) is $\Omega(g(x))$. When f(x) is $\Theta(g(x))$ we say that f is big-Theta of g(x), that f(x) is of order g(x), and that f(x) and g(x) are of the same order.

 $|C_1|g(x)| \le |f(x)| \le C_2|g(x)|$

- O(1) Time requirement is constant, and it is independent of the problem's size.
- O(log₂n) Time requirement for a logarithmic algorithm increases increases slowly as the problem size increases.
- O(n) Time requirement for a **linear** algorithm increases directly with the size of the problem.
- **O(n*log_n)** Time requirement for a **n*log_n** algorithm increases more rapidly than a linear algorithm.
- O(n²) Time requirement for a **quadratic** algorithm increases rapidly with the size of the problem.
- **O(n³)** Time requirement for a cubic algorithm increases more rapidly with the size of the problem than the time requirement for a quadratic algorithm.
- O(2ⁿ) As the size of the problem increases, the time requirement for an **exponential** algorithm increases too rapidly to be practical.



ANALYSIS OF ALGORITHM

- When we analyze algorithms, we should employ mathematical techniques that analyze algorithms independently of *specific implementations, computers, or data*.
- To analyze algorithms:
 - First, we start to count the number of significant operations in a particular solution to assess its efficiency.
 - Then, we will express the efficiency of algorithms using growth functions.

THE EXECUTION TIME OF ALGORITHMS

Each operation in an algorithm (or a program) has a cost.
 → Each operation takes a certain of time.

 $count = count + 1; \rightarrow take a certain amount of time, but it is constant$

A sequence of operations:

count	= count + 1;	Cost: c_1
sum =	<pre>sum + count;</pre>	Cost: c_2

 \rightarrow Total Cost = $c_1 + c_2$

	Cost	Times
i = 1;	c1	1
sum = 0;	c 2	1
while (i <= n) {	c 3	n+1
i = i + 1;	c 4	n
sum = sum + i;	c5	n

$$T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5$$

= (c3+c4+c5)*n + (c1+c2+c3)
= a*n + b

}

 \rightarrow So, the growth-rate function for this algorithm is O(n)

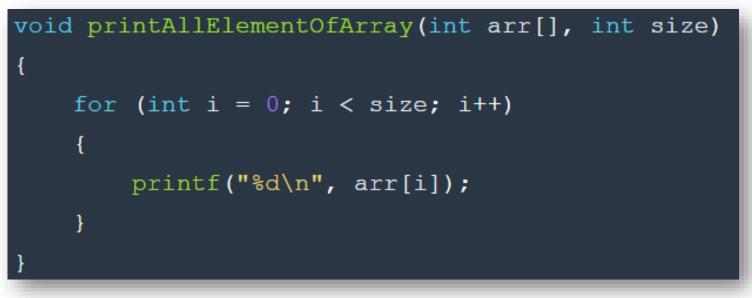
- O(1)
- Big O notation O(1) represents the complexity of an algorithm that always execute in same time or space regardless of the input data.

```
void printFirstElementOfArray(int arr[])
{
    printf("First element of array = %d",arr[0]);
}
```

• This function runs in O(1) time (or "constant time") relative to its input. The input array could be 1 item or 1,000 items, but this function would still just require one step.

- O(n): Big O notation O(N) represents the complexity of an algorithm, whose
 performance will grow linearly (in direct proportion) to the size of the input data.
- O(n) example : The execution time will depend on the size of array. When the size of the array increases, the execution time will also increase in the same proportion (linearly)

```
This function runs in O(n)
time (or "linear time"),
where n is the number of
items in the array. If the
array has 10 items, we have
to print 10 times. If it has
1000 items, we have to print
1000 times.
```



• O(n²) example

Here we're nesting two loops. If our array has n items, our outer loop runs n times and our inner loop runs n times for each iteration of the outer loop, giving us n^2 total prints

Thus this function runs in $O(n^2)$ time (or "quadratic time"). If the array has 10 items, we have to print 100 times. If it has 1000 items, we have to print 1000000 times.

Other examples: Bubble sort

```
void printAllPossibleOrderedPairs(int arr[], int size)
{
    for (int i = 0; i < size; i++)
    {
        for (int j = 0; j < size; j++)
        {
            printf("%d = %d\n", arr[i], arr[j]);
        }
    }
}</pre>
```

PROPERTIES OF GROWTH-RATE FUNCTIONS

- 1. We can ignore low-order terms in an algorithm's growth-rate function.
 - If an algorithm is $O(n^3+4n^2+3n)$, it is also $O(n^3)$.
 - We only use the higher-order term as algorithm's growth-rate function.
- 2. We can ignore a multiplicative constant in the higher-order term of an algorithm's growth-rate function.
 - If an algorithm is $O(5n^3)$, it is also $O(n^3)$.
- 3. O(f(n)) + O(g(n)) = O(f(n)+g(n))
 - We can combine growth-rate functions.
 - If an algorithm is $O(n^3) + O(4n)$, it is also $O(n^3 + 4n^2) \rightarrow So$, it is $O(n^3)$.
 - Similar rules hold for multiplication.

DROP THE CONSTANTS

• When you're calculating the big O complexity of something, you just throw out the constants. Like:

```
void printAllItemsTwice(int arr[], int size)
{
    for (int i = 0; i < size; i++)
    {
        printf("%d\n", arr[i]);
    }
    for (int i = 0; i < size; i++)
    {
        printf("%d\n", arr[i]);
    }
}</pre>
```

```
void printFirstItemThenFirstHalfThenSayHi100Times(int arr[], int size)
   printf("First element of array = %d\n",arr[0]);
   for (int i = 0; i < size/2; i++)
       printf("%d\n", arr[i]);
   for (int i = 0; i < 100; i++)
       printf("Hi\n");
```

```
This is O(2n), which we just call O(n).
```

This is O(1 + n/2 + 100), which we just call O(n).

DROP THE LESS SIGNIFICANT TERMS

Here our runtime is O(n + n2), which we just call O(n2).

Similarly:

O(n3 + 50n2 + 10000) is O(n3)O((n + 30) * (n + 5)) is O(n2)Again, we can get away with this because the less significant terms quickly become, well, less significant as n gets big.

```
void printAllNumbersThenAllPairSums(int arr[], int size)
    for (int i = 0; i < size; i++)</pre>
        printf("%d\n", arr[i]);
    }
    for (int i = 0; i < size; i++)</pre>
         for (int j = 0; j < size; j++)</pre>
             printf("%d\n", arr[i] + arr[j]);
```


Remember,

for big O notation we're looking at what happens as **n** gets arbitrarily large. As **n** gets really big, adding 100 or dividing by 2 has a decreasingly significant effect.

WHAT TO ANALYZE

- An algorithm can require different times to solve different problems of the same size.
 - Eg. Searching an item in a list of n elements using sequential search. → Cost: 1,2,...,n
- *Worst-Case Analysis* The maximum amount of time that an algorithm require to solve a problem of size n.
 - This gives an upper bound for the time complexity of an algorithm.
 - Normally, we try to find worst-case behavior of an algorithm.
- Best-Case Analysis The minimum amount of time that an algorithm require to solve a problem of size n.
 - The best case behavior of an algorithm is NOT so useful.
- Average-Case Analysis The average amount of time that an algorithm require to solve a problem of size n.
 - Sometimes, it is difficult to find the average-case behavior of an algorithm.
 - We have to look at all possible data organizations of a given size n, and their distribution probabilities of these organizations.
 - Worst-case analysis is more common than average-case analysis.

LINEAR SEARCH ALGORITHM

If Key = 41 Then No of comparisons will be : 6

0	1	2	3	4	5	6	7	8
70	40	30	11	57	41	25	14	52

Best Case : If the key element is present at the 1st index then it is the best case Best Case Time = 1 (as it will take constant time) Complexity : O(1)

LINEAR SEARCH ALGORITHM

- Worst Case : Searching a key at last index (i.e. 52)
- Worst Case Time : O(n)

0	1	2	3	4	5	6	7	8
70	40	30	11	57	41	25	14	52

• Average Case : All possible case time / no of cases 1+2+3+4+5+6+7+8+9 / 9 2 3 0 4 5 6 1+2+3+....+n/n(n(n+1)/2)/n57 25 40 30 70 11 41 (n+1) / 2O(n)

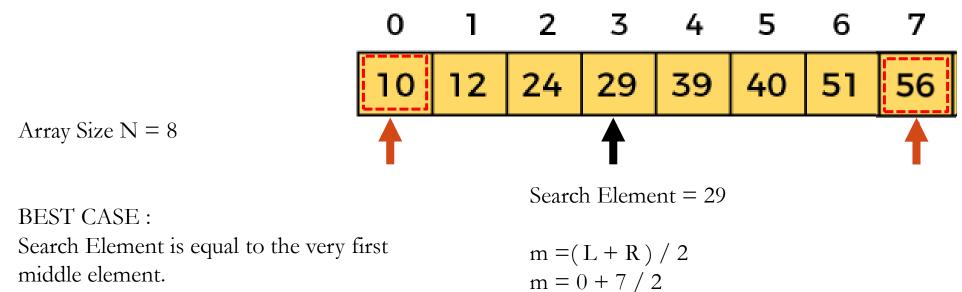
8

52

7

14

Minimum No. of Comparison -> Best Case Maximum No of Comparison -> Worst Case



m = 3

BEST CASE TIME = O(1)

Middle element = Search Element

Array Size N = 8

- WORST CASE :
- Search Element is present at either beginning of the array or end of the array.

1 5 7 2 3 4 6 0 39 12 24 29 40 51 56 D Search Element = 10

$$1^{st}$$
 Comparison
 $m = (L + R) / 2$
 $m = 0 + 7 / 2$
 $m = 3$

Middle element \neq Search Element

Array Size N = 8

- WORST CASE :
- Search Element is present at either beginning of the array or end of the array.

1 23 5 6 7 4 0 29 39 12 40 51 56 24 U Search Element = 102nd Comparison

$$m = (L + R) / 2$$

 $m = 0 + 2 / 2$
 $m = 1$

Middle element \neq Search Element

Array Size N = 8

- WORST CASE :
- Search Element is present at either beginning of the array or end of the array.

0 1 2 3 4 5 6 7 10 12 24 29 39 40 51 56

> Search Element = 10 3rd Comparison

m = (L + R) / 2 m = 0 + 0 / 2 m = 0Middle element = Search Element

• Array Size N = 8

- WORST CASE :
- Search Element is present at either beginning of the array or end of the array.
- O (log_2 n)

0	1	2	3	4	5	6	7	_	
10	12	24	29	39	40	51	56		
$8/2 \rightarrow 4 = 1 \qquad 8/2^{1} \rightarrow 4 = 1 \qquad N/2^{k} = 1 \\ 4/2 \rightarrow 2 = 2 \qquad 8/2^{2} \rightarrow 2 = 2 \qquad N = 2^{k} \\ 2/2 \rightarrow 1 = 3 \qquad 8/2^{3} \rightarrow 1 = 3 \qquad \log_{2} N = k \log_{2} 2 \\ k = \log_{2} n$									
0	1	2 3	3 4	5	67	← ar	ı array	with size 8	
3	2	3 1	. 3	2	34	← #	t of iter	rations	
The average # of iterations = $21/8 < \log_2 8$									

